Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Coexistence in interval effect algebras


Author: Gejza Jenča
Journal: Proc. Amer. Math. Soc. 139 (2011), 331-344
MSC (2010): Primary 03G12; Secondary 06F20, 81P10
DOI: https://doi.org/10.1090/S0002-9939-2010-10554-3
Published electronically: July 29, 2010
MathSciNet review: 2729095
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by the notion of coexistence of effect-valued observables, we give a characterization of coexistent subsets of interval effect algebras.


References [Enhancements On Off] (What's this?)

  • 1. M.K. Bennett and D.J. Foulis.
    Interval and scale effect algebras.
    Advances in Applied Mathematics, 19:200-215, 1997. MR 1459498 (98m:06024)
  • 2. L. Beran.
    Orthomodular Lattices, Algebraic Approach.
    Kluwer, Dordrecht, 1985. MR 784029 (86m:06015b)
  • 3. P. Busch, P. Lahti, and P. Mittelstaedt.
    The Quantum Theory of Measurement.
    Springer-Verlag, 2nd edition, 1996. MR 1419313 (98b:81019)
  • 4. P. Busch and H-J. Schmidt.
    Coexistence of qubit effects.
    Quantum Information Processing, Quantum Information Processing 9:143-169, 2010.
  • 5. P. Bush, M. Grabowski, and P. Lahti.
    Operational Quantum Physics.
    Springer-Verlag, Berlin, 1995. MR 1356220 (96j:81022)
  • 6. C.C. Chang.
    Algebraic analysis of many-valued logics.
    Trans. Amer. Math. Soc., 88:467-490, 1959. MR 0094302 (20:821)
  • 7. F. Chovanec and F. Kôpka.
    Boolean $ D$-posets.
    Tatra Mt. Math. Publ, 10:183-197, 1997. MR 1469294 (98c:03127)
  • 8. A. Dvurečenskij and S. Pulmannová.
    New Trends in Quantum Structures.
    Kluwer, Dordrecht, and Ister Science, Bratislava, 2000. MR 1861369 (2002h:81021)
  • 9. D.J. Foulis and M.K. Bennett.
    Effect algebras and unsharp quantum logics.
    Found. Phys., 24:1325-1346, 1994. MR 1304942 (95k:06020)
  • 10. D.J. Foulis and C.H. Randall.
    Operational quantum statistics. I. Basic concepts.
    J. Math. Phys., 13:1667-1675, 1972. MR 0416417 (54:4491)
  • 11. R. Giuntini and H. Greuling.
    Toward a formal language for unsharp properties.
    Found. Phys., 19:931-945, 1989. MR 1013913 (90j:81017)
  • 12. S. Gudder.
    Coexistence of quantum effects.
    Reports on Mathematical Physics, 63(2):289-303, 2009. MR 2519471
  • 13. K.-E. Hellwig.
    Coexistent effects in quantum mechanics.
    International Journal of Theoretical Physics, 2:147-155, 1969.
  • 14. G. Jenča.
    Boolean algebras R-generated by MV-effect algebras.
    Fuzzy sets and systems, 145:279-285, 2004. MR 2074002 (2005e:06018)
  • 15. G. Jenča.
    Compatibility support mappings in effect algebras. Math. Slovaca (to appear). arXiv:math.RA/0910.2825.
  • 16. G. Kalmbach.
    Orthomodular Lattices.
    Academic Press, New York, 1983. MR 716496 (85f:06012)
  • 17. F. Kôpka.
    $ D$-posets of fuzzy sets.
    Tatra Mt. Math. Publ., 1:83-87, 1992. MR 1230466 (94e:04008)
  • 18. F. Kôpka and F. Chovanec.
    $ D$-posets.
    Math. Slovaca, 44:21-34, 1994. MR 1290269 (95i:03134)
  • 19. K. Kraus.
    States, Effects and Operations.
    Springer-Verlag, Berlin, 1983. MR 725167 (86j:81008)
  • 20. P. Lahti and S. Pulmannová.
    Coexistent observables and effects in quantum mechanics.
    Reports on Mathematical Physics, 39:339-351, 1997. MR 1477898 (98i:81013)
  • 21. P. Lahti and S. Pulmannová.
    Coexistence vs. functional coexistence of quantum observables.
    Reports on Mathematical Physics, 47:199-212, 2001. MR 1836331 (2002d:81018)
  • 22. P. Lahti, S. Pulmannová, and K. Ylinen.
    Coexistent observables and effects in convexity approach.
    Reports on Mathematical Physics, 39:6364-6371, 1998. MR 1656976 (99j:81020)
  • 23. G. Ludwig.
    Foundations of Quantum Mechanics.
    Springer-Verlag, Berlin, 1983. MR 690770 (85g:81014)
  • 24. Günther Ludwig.
    Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien.
    Zeitschrift für Physik A Hadrons and Nuclei, 181(3):233-260, 1964. MR 0181244 (31:5473)
  • 25. D. Mundici.
    Interpretation of AF $ {C}^*$-algebras in Łukasziewicz sentential calculus.
    J. Functional Analysis, 65:15-53, 1986. MR 819173 (87k:46146)
  • 26. S. Pulmannová.
    Compatibility and decompositions of effects.
    Journal of Mathematical Physics, 43:2817-2830, 2002. MR 1893702 (2003b:81012)
  • 27. Gian-Carlo Rota.
    On the foundations of combinatorial theory. I. Theory of Möbius Functions.
    Probability Theory and Related Fields, 2:340-368, 1964. MR 0174487 (30:4688)
  • 28. Richard P. Stanley.
    Enumerative combinatorics, volume 1.
    Wadsworth and Brooks/Cole, Monterey, CA, 1986. MR 0847717 (87j:05003)
  • 29. P. Stano, D. Reitzner, and T. Heinosaari.
    Coexistence of qubit effects.
    Phys. Rev. A, 78:012315, 2008. MR 2491108 (2010d:81079)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03G12, 06F20, 81P10

Retrieve articles in all journals with MSC (2010): 03G12, 06F20, 81P10


Additional Information

Gejza Jenča
Affiliation: Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, Bratislava 813 68, Slovak Republic
Email: gejza.jenca@stuba.sk

DOI: https://doi.org/10.1090/S0002-9939-2010-10554-3
Keywords: Effect algebra, coexistent observables
Received by editor(s): September 26, 2009
Received by editor(s) in revised form: March 19, 2010
Published electronically: July 29, 2010
Additional Notes: This research is supported by grant VEGA G-1/0080/10 of MŠ SR, Slovakia and by the Slovak Research and Development Agency under contract No. APVV-0071-06.
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society