Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Two questions on mapping class groups


Author: Louis Funar
Journal: Proc. Amer. Math. Soc. 139 (2011), 375-382
MSC (2010): Primary 57M07, 20F36, 20F38, 57N05
DOI: https://doi.org/10.1090/S0002-9939-2010-10555-5
Published electronically: August 5, 2010
MathSciNet review: 2729098
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that central extensions of the mapping class group $ M_g$ of the closed orientable surface of genus $ g$ by $ \mathbb{Z}$ are residually finite. Further we give rough estimates of the largest $ N=N_g$ such that homomorphisms from $ M_g$ to $ SU(N)$ have finite image. In particular, homomorphisms of $ M_g$ into $ SL([\sqrt{g+1}],\mathbb{C})$ have finite image. Both results come from properties of quantum representations of mapping class groups.


References [Enhancements On Off] (What's this?)

  • 1. J. E. Andersen, Asymptotic faithfulness of the quantum $ {SU}(n)$ representations of the mapping class groups, Ann. of Math. (2) 163(2006), 347-368. MR 2195137 (2007c:53131)
  • 2. M. R. Bridson, Semisimple actions of mapping class groups on CAT$ (0)$ spaces, arXiv:0908.0685, ``The Geometry of Riemann Surfaces'', London Mathematical Society Lecture Notes, 368, dedicated to Bill Harvey on his 65th birthday, to appear.
  • 3. M. R. Bridson, On the dimension of CAT(0) spaces where mapping class groups act, arXiv:0908.0690.
  • 4. C. Chevalley, Théorie des groupes de Lie II. Groupes algébriques, Actualités Sci. Ind. 1152, Hermann $ \&$ Cie., Paris, 1951. MR 0051242 (14:448d)
  • 5. M. Culler and K. Vogtmann, A group-theoretic criterion for property $ {FA}$, Proc. Amer. Math. Soc. 124(1996), 677-683. MR 1307506 (96f:20040)
  • 6. P. Deligne, Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Acad. Sci. Paris Sér. A-B 287(1978), no. 4, A203-A208. MR 507760 (80g:20056)
  • 7. B. Farb, Some problems on mapping class groups and moduli space, in Problems on mapping class groups and related topics, 11-55, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. MR 2264130 (2007h:57018)
  • 8. B. Farb and D. Margalit, A primer of mapping class groups, preprint.
  • 9. B. Farb, Group actions and Helly's theorem. Advances Math. 222(2009), 1574-1588. MR 2555905
  • 10. B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena in mapping class groups, Duke Math. J. 106(2001), 581-597. MR 1813237 (2001k:20076)
  • 11. M. H. Freedman, K. Walker and Zhenghan Wang, Quantum $ \rm SU(2)$ faithfully detects mapping class groups modulo center, Geom. Topol. 6(2002), 523-539. MR 1943758 (2004a:57037)
  • 12. L. Funar, Représentations du groupe symplectique et variétés de dimension $ 3$, C. R. Acad. Sci. Paris Sér. I Math. 316(1993), no. 10, 1067-1072. MR 1222974 (95g:57030)
  • 13. L. Funar, On the TQFT representations of the mapping class groups, Pacific J. Math. 188(1999), 251-274. MR 1684208 (2000d:57026)
  • 14. L. Funar, Some abelian invariants of $ 3$-manifolds, Rev. Roumaine Math. Pures Appl. 45(2000), 825-861. MR 1865997 (2003f:57023)
  • 15. S. Gervais, Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc. 348(1996), 3097-3132. MR 1327256 (96j:57016)
  • 16. M. Korkmaz and A. I. Stipsicz, The second homology groups of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc. 134(2003), 479-489. MR 1981213 (2004c:57033)
  • 17. G. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse Math. Grenz. 17, Springer-Verlag, Berlin, 1991. MR 1090825 (92h:22021)
  • 18. G. Masbaum and J. D. Roberts, On central extensions of mapping class groups, Math. Ann. 302(1995), 131-150. MR 1329450 (96i:57013)
  • 19. M. Reid, Undergraduate commutative algebra, London Mathematical Society Student Texts 29, Cambridge University Press, Cambridge, 1995. MR 1458066 (98c:13001)
  • 20. A. Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications 29, American Mathematical Society, New York, 1946. MR 0023093 (9:303c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M07, 20F36, 20F38, 57N05

Retrieve articles in all journals with MSC (2010): 57M07, 20F36, 20F38, 57N05


Additional Information

Louis Funar
Affiliation: Institut Fourier, BP 74, UMR 5582, University of Grenoble I, 38402 Saint-Martin-d’Hères cedex, France
Email: funar@fourier.ujf-grenoble.fr

DOI: https://doi.org/10.1090/S0002-9939-2010-10555-5
Keywords: Mapping class group, central extension, quantum representation.
Received by editor(s): October 12, 2009
Received by editor(s) in revised form: April 2, 2010
Published electronically: August 5, 2010
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society