Tautological pairings on moduli spaces of curves
Authors:
Renzo Cavalieri and Stephanie Yang
Journal:
Proc. Amer. Math. Soc. 139 (2011), 5162
MSC (2010):
Primary 14N35
Published electronically:
August 23, 2010
MathSciNet review:
2729070
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We discuss analogs of Faber's conjecture for two nested sequences of partial compactifications of the moduli space of smooth pointed curves. We show that their tautological rings are onedimensional in top degree but sometimes do not satisfy Poincaré duality.
 [AC]
Enrico
Arbarello and Maurizio
Cornalba, Combinatorial and algebrogeometric cohomology classes on
the moduli spaces of curves, J. Algebraic Geom. 5
(1996), no. 4, 705–749. MR 1486986
(99c:14033)
 [Fa]
Carel
Faber, A conjectural description of the tautological ring of the
moduli space of curves, Moduli of curves and abelian varieties,
Aspects Math., E33, Vieweg, Braunschweig, 1999, pp. 109–129. MR 1722541
(2000j:14044)
 [FP1]
C.
Faber and R.
Pandharipande, Hodge integrals and GromovWitten theory,
Invent. Math. 139 (2000), no. 1, 173–199. MR 1728879
(2000m:14057), http://dx.doi.org/10.1007/s002229900028
 [FP2]
C.
Faber and R.
Pandharipande, Logarithmic series and Hodge integrals in the
tautological ring, Michigan Math. J. 48 (2000),
215–252. With an appendix by Don Zagier; Dedicated to William Fulton
on the occasion of his 60th birthday. MR 1786488
(2002e:14041), http://dx.doi.org/10.1307/mmj/1030132716
 [FP3]
C.
Faber and R.
Pandharipande, Relative maps and tautological classes, J. Eur.
Math. Soc. (JEMS) 7 (2005), no. 1, 13–49. MR 2120989
(2005m:14046), http://dx.doi.org/10.4171/JEMS/20
 [Fu]
William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2.
 [GP]
T.
Graber and R.
Pandharipande, Constructions of nontautological classes on moduli
spaces of curves, Michigan Math. J. 51 (2003),
no. 1, 93–109. MR 1960923
(2004e:14043), http://dx.doi.org/10.1307/mmj/1049832895
 [GV1]
Tom
Graber and Ravi
Vakil, On the tautological ring of
\overline{ℳ}_{ℊ,𝓃}, Turkish J. Math.
25 (2001), no. 1, 237–243. MR 1829089
(2002b:14034)
 [GV2]
Tom
Graber and Ravi
Vakil, Relative virtual localization and vanishing of tautological
classes on moduli spaces of curves, Duke Math. J. 130
(2005), no. 1, 1–37. MR 2176546
(2006j:14035), http://dx.doi.org/10.1215/S0012709405130113
 [HM]
Joe
Harris and Ian
Morrison, Moduli of curves, Graduate Texts in Mathematics,
vol. 187, SpringerVerlag, New York, 1998. MR 1631825
(99g:14031)
 [HKK$^+$]
Kentaro
Hori, Sheldon
Katz, Albrecht
Klemm, Rahul
Pandharipande, Richard
Thomas, Cumrun
Vafa, Ravi
Vakil, and Eric
Zaslow, Mirror symmetry, Clay Mathematics Monographs,
vol. 1, American Mathematical Society, Providence, RI, 2003. With a
preface by Vafa. MR 2003030
(2004g:14042)
 [Ke]
Sean
Keel, Intersection theory of moduli space of
stable 𝑛pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665
(92f:14003), http://dx.doi.org/10.1090/S00029947199210346650
 [Ko]
Joachim Kock, Notes on psi classes, available at http://www.mat.uab.es/~kock/ GW.html.
 [L]
Eduard
Looijenga, On the tautological ring of ℳ_{ℊ},
Invent. Math. 121 (1995), no. 2, 411–419. MR 1346214
(96g:14021), http://dx.doi.org/10.1007/BF01884306
 [M]
David
Mumford, Towards an enumerative geometry of the moduli space of
curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36,
Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
(85j:14046)
 [W]
J.
H. C. Whitehead, On 𝐶¹complexes, Ann. of Math.
(2) 41 (1940), 809–824. MR 0002545
(2,73d)
 [Y]
Stephanie Yang, Intersection numbers on . Preprint. Available at http://www. stephanieyang.com/Papers.html.
 [AC]
 Enrico Arbarello and Maurizio Cornalba, Combinatorial and algebrogeometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom. 5 (1996), no. 4, 705749. MR 1486986 (99c:14033)
 [Fa]
 Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties Aspects Math., E33, Vieweg, Braunschweig, 1999, pp. 109129. MR 1722541 (2000j:14044)
 [FP1]
 Carel Faber and Rahul Pandharipande, Hodge integrals and GromovWitten theory, Invent. Math. 139 (2000), no. 1, 173199. MR 1728879 (2000m:14057)
 [FP2]
 Carel Faber and Rahul Pandharipande, Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J. 48 (2000), 215252. With an appendix by Don Zagier; dedicated to William Fulton on the occasion of his 60th birthday. MR 1786488 (2002e:14041)
 [FP3]
 Carel Faber and Rahul Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 1349. MR 2120989 (2005m:14046)
 [Fu]
 William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2.
 [GP]
 Tom Graber and Rahul Pandharipande, Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J. 51 (2003), no. 1, 93109. MR 1960923 (2004e:14043)
 [GV1]
 Tom Graber and Ravi Vakil, On the tautological ring of , Turkish J. Math. 25 (2001), no. 1, 237243. MR 1829089 (2002b:14034)
 [GV2]
 Tom Graber and Ravi Vakil, Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J. 130 (2005), no. 1, 137. MR 2176546 (2006j:14035)
 [HM]
 Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, SpringerVerlag, New York, 1998. MR 1631825 (99g:14031)
 [HKK$^+$]
 Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow, Mirror symmetry, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Math. Institute, Cambridge, MA, 2003. With a preface by Vafa. MR 2003030 (2004g:14042)
 [Ke]
 Sean Keel, Intersection theory of moduli space of stable pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545574. MR 1034665 (92f:14003)
 [Ko]
 Joachim Kock, Notes on psi classes, available at http://www.mat.uab.es/~kock/ GW.html.
 [L]
 Eduard Looijenga, On the tautological ring of , Invent. Math. 121 (1995), no. 2, 411419. MR 1346214 (96g:14021)
 [M]
 David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271328. MR 717614 (85j:14046)
 [W]
 J. H. C. Whitehead, On complexes, Ann. of Math. (2) 41 (1940), 809824. MR 0002545 (2,73d)
 [Y]
 Stephanie Yang, Intersection numbers on . Preprint. Available at http://www. stephanieyang.com/Papers.html.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
14N35
Retrieve articles in all journals
with MSC (2010):
14N35
Additional Information
Renzo Cavalieri
Affiliation:
Department of Mathematics, Colorado State University, Weber Building, Fort Collins, Colorado 805231874
Email:
renzo@math.colostate.edu
Stephanie Yang
Affiliation:
Institutionen för Matematik, Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden
Email:
stpyang@math.kth.se
DOI:
http://dx.doi.org/10.1090/S000299392010106196
PII:
S 00029939(2010)106196
Received by editor(s):
February 24, 2009
Received by editor(s) in revised form:
April 26, 2009, September 1, 2009, December 1, 2009, and January 29, 2010
Published electronically:
August 23, 2010
Communicated by:
Ted Chinburg
Article copyright:
© Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
