Tautological pairings on moduli spaces of curves

Authors:
Renzo Cavalieri and Stephanie Yang

Journal:
Proc. Amer. Math. Soc. **139** (2011), 51-62

MSC (2010):
Primary 14N35

Published electronically:
August 23, 2010

MathSciNet review:
2729070

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss analogs of Faber's conjecture for two nested sequences of partial compactifications of the moduli space of smooth pointed curves. We show that their tautological rings are one-dimensional in top degree but sometimes do not satisfy Poincaré duality.

**[AC]**Enrico Arbarello and Maurizio Cornalba,*Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves*, J. Algebraic Geom.**5**(1996), no. 4, 705–749. MR**1486986****[Fa]**Carel Faber,*A conjectural description of the tautological ring of the moduli space of curves*, Moduli of curves and abelian varieties, Aspects Math., E33, Vieweg, Braunschweig, 1999, pp. 109–129. MR**1722541****[FP1]**C. Faber and R. Pandharipande,*Hodge integrals and Gromov-Witten theory*, Invent. Math.**139**(2000), no. 1, 173–199. MR**1728879**, 10.1007/s002229900028**[FP2]**C. Faber and R. Pandharipande,*Logarithmic series and Hodge integrals in the tautological ring*, Michigan Math. J.**48**(2000), 215–252. With an appendix by Don Zagier; Dedicated to William Fulton on the occasion of his 60th birthday. MR**1786488**, 10.1307/mmj/1030132716**[FP3]**C. Faber and R. Pandharipande,*Relative maps and tautological classes*, J. Eur. Math. Soc. (JEMS)**7**(2005), no. 1, 13–49. MR**2120989**, 10.4171/JEMS/20**[Fu]**William Fulton,*Intersection theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2.**[GP]**T. Graber and R. Pandharipande,*Constructions of nontautological classes on moduli spaces of curves*, Michigan Math. J.**51**(2003), no. 1, 93–109. MR**1960923**, 10.1307/mmj/1049832895**[GV1]**Tom Graber and Ravi Vakil,*On the tautological ring of \overline{ℳ}_{ℊ,𝓃}*, Turkish J. Math.**25**(2001), no. 1, 237–243. MR**1829089****[GV2]**Tom Graber and Ravi Vakil,*Relative virtual localization and vanishing of tautological classes on moduli spaces of curves*, Duke Math. J.**130**(2005), no. 1, 1–37. MR**2176546**, 10.1215/S0012-7094-05-13011-3**[HM]**Joe Harris and Ian Morrison,*Moduli of curves*, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR**1631825****[HKK$^+$]**Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow,*Mirror symmetry*, Clay Mathematics Monographs, vol. 1, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa. MR**2003030****[Ke]**Sean Keel,*Intersection theory of moduli space of stable 𝑛-pointed curves of genus zero*, Trans. Amer. Math. Soc.**330**(1992), no. 2, 545–574. MR**1034665**, 10.1090/S0002-9947-1992-1034665-0**[Ko]**Joachim Kock,*Notes on psi classes, available at*.`http://www.mat.uab.es/~kock/ GW.html`**[L]**Eduard Looijenga,*On the tautological ring of ℳ_{ℊ}*, Invent. Math.**121**(1995), no. 2, 411–419. MR**1346214**, 10.1007/BF01884306**[M]**David Mumford,*Towards an enumerative geometry of the moduli space of curves*, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR**717614****[W]**J. H. C. Whitehead,*On 𝐶¹-complexes*, Ann. of Math. (2)**41**(1940), 809–824. MR**0002545****[Y]**Stephanie Yang,*Intersection numbers on*. Preprint. Available at http://www. stephanieyang.com/Papers.html.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
14N35

Retrieve articles in all journals with MSC (2010): 14N35

Additional Information

**Renzo Cavalieri**

Affiliation:
Department of Mathematics, Colorado State University, Weber Building, Fort Collins, Colorado 80523-1874

Email:
renzo@math.colostate.edu

**Stephanie Yang**

Affiliation:
Institutionen för Matematik, Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden

Email:
stpyang@math.kth.se

DOI:
http://dx.doi.org/10.1090/S0002-9939-2010-10619-6

Received by editor(s):
February 24, 2009

Received by editor(s) in revised form:
April 26, 2009, September 1, 2009, December 1, 2009, and January 29, 2010

Published electronically:
August 23, 2010

Communicated by:
Ted Chinburg

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.