Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



An index formula for the two variable Jordan block

Authors: Yufeng Lu, Yixin Yang and Rongwei Yang
Journal: Proc. Amer. Math. Soc. 139 (2011), 511-520
MSC (2010): Primary 47A13; Secondary 46E20
Published electronically: July 13, 2010
MathSciNet review: 2736334
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On Hardy space $ H^2(\mathbb{D}^2)$ over the bidisk, let $ (S_z,S_w)$ be the compression of the pair $ (T_z,T_w)$ to the quotient module $ H^2(\mathbb{D}^2)\ominus M$. In this paper, we obtain an index formula for $ (S_z,S_w)$ when it is Fredholm. It is also shown that the evaluation operator $ L(0)$ is compact on a Beurling type quotient module if and only if the corresponding inner function is a finite Blaschke product in $ w$.

References [Enhancements On Off] (What's this?)

  • [Ar] W. Arveson, The curvature invariant of a Hilbert module over $ \mathbb{C}[z_1,z_2,\cdots, z_n]$, J. Reine Angew Math. 522(2000), 173-236. MR 1758582 (2003a:47013)
  • [Be] K. Bercovici, Operator theory and arithmetic in $ H^{\infty}$, Mathematical Surveys and Monographs, No. 26, Amer. Math. Soc., 1988, Providence, RI. MR 954383 (90e:47001)
  • [CG] X. Chen and K. Guo, Analytic Hilbert modules, Chapman Hall/CRC, Boca Raton, FL, 2003. MR 1988884 (2004d:47024)
  • [CMY] R. Curto, P. Muhly and K. Yan, The $ C^*$-algebra of a homogeneous ideal in two variables is type I, Current topics in operator algebras (Nara, 1990), 130-136, World Sci. Publishing, River Edge, NJ, 1991. MR 1193935 (93h:47055)
  • [Cu] R. Curto, Fredholm and invertible $ n$-tuples of operators. The deformation problem. Trans. Amer. Math. Soc. 266(1981), no. 1, 129-159. MR 613789 (82g:47010)
  • [DP] R. G. Douglas and V. I. Paulsen, Hilbert modules over function algebras, Longman Research Notes in Mathematics, Vol. 217, Longman, Harlow, NY, 1989. MR 1028546 (91g:46084)
  • [GM] P. Ghatage and V. Mandrekar, On Beurling type invariant subspaces of $ L^2(T^2)$ and their equivalence, J. Oper. Theory 20(1988), no. 1, 83-89. MR 972182 (90i:47005)
  • [GRS] D. Greene, S. Richter and C. Sundberg, On the index of invariant subspaces in spaces of analytic functions of several complex variables, J. Reine. Angew. Math. 587(2005), 49-76. MR 2186975 (2006i:47013)
  • [Guo] K. Guo, Defect operators, defect functions and defect indices for analytic submodules, J. Funct. Anal. 213(2004), 380-411. MR 2078631 (2005e:47016)
  • [GW1] K. Guo and P. Wang, Defect operators and Fredholmness for Toeplitz pairs with inner symbols, J. Oper. Theory 58:2(2007), 251-268. MR 2358530 (2008i:47057)
  • [GW2] K. Guo and P. Wang, Essentially normal Hilbert modules and $ K$-homology. III. Homogenous quotient modules of Hardy modules on the bidisk, Sci. China Ser. A 50(2007), 387-411. MR 2334557 (2008j:47006)
  • [GY] K. Guo and R. Yang, The core function of Hardy submodules over the bidisk, Indiana Univ. Math. J. 53(2004), 205-222. MR 2048190 (2005m:46048)
  • [Ru] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [SF] B. Sz.-Nagy and C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 0275190 (43:947)
  • [Ya1] R. Yang, BCL index and Fredholm tuples, Proc. Amer. Math. Soc. 127(1999), no. 8, 2385-2393. MR 1605949 (99j:47013)
  • [Ya2] R. Yang, The Berger-Shaw theorem in the Hardy module over the bidisk, J. Oper. Theory 42(1999), no. 2, 379-404. MR 1717024 (2000h:47040)
  • [Ya3] R. Yang, Operator theory in the Hardy space over the bidisk. II, Int. Equ. Oper. Theory 42(2002), 99-124. MR 1866878 (2002m:47007)
  • [Ya4] R. Yang, Operator theory in the Hardy space over the bidisk. III, J. Funct. Anal. 186(2001), 521-545. MR 1864831 (2002m:47008)
  • [Ya5] R. Yang, On two-variable Jordan blocks, Acta Sci. Math. (Szeged) 69(2003), 739-754. MR 2034205 (2004j:47011)
  • [Ya6] R. Yang, Beurling's phenomenon in two variables, Integr. Equ. Oper. Theory 48(2004), no. 3, 411-423. MR 2038510 (2004j:46038)
  • [Ya7] R. Yang, The core operator and congruent submodules, J. Funct. Anal. 228(2005), 469-486. MR 2175415 (2006e:47015)
  • [Ya8] R. Yang, On two variable Jordan block. II, Int. Equ. Oper. Theory 56(2006), 431-449. MR 2270846 (2007i:47006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A13, 46E20

Retrieve articles in all journals with MSC (2010): 47A13, 46E20

Additional Information

Yufeng Lu
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China

Yixin Yang
Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China

Rongwei Yang
Affiliation: Department of Mathematical and Statistics, State University of New York at Albany, Albany, New York 12222

Keywords: Index formula, two variable Jordan block, evaluation operator, Hardy space over bidisk
Received by editor(s): December 21, 2009
Received by editor(s) in revised form: March 5, 2010
Published electronically: July 13, 2010
Additional Notes: This research was supported by NSFC, grants no. 10671028 and 10971020
Communicated by: Nigel J. Kalton
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society