Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Optimal $L_{}^1$-bounds for submartingales
HTML articles powered by AMS MathViewer

by Lutz Mattner and Uwe Rösler PDF
Proc. Amer. Math. Soc. 139 (2011), 735-746 Request permission

Abstract:

The optimal function $f$ satisfying \[ \mathbb {E} |\sum _{1}^n X_i | \ge f(\mathbb {E}|X_1|,\ldots ,\mathbb {E}|X_n|) \] for every martingale $(X_1,X_1+X_2, \ldots ,\sum _{i=1}^n X_i)$ is shown to be given by \[ f(a) = \max \Big \{ a_k-\sum _{i=1}^{k-1} a_i\Big \}_{k=1}^n \cup \Big \{\frac {a_k}2\Big \} _{k=3}^n \] for $a\in {[0,\infty [}^n_{}$. A similar result is obtained for submartingales $(0,X_1, X_1+X_2,\ldots , \sum _{i=1}^n X_i)$.

The optimality proofs use a convex-analytic comparison lemma of independent interest.

References
  • David C. Cox and J. H. B. Kemperman, Sharp bounds on the absolute moments of a sum of two i.i.d. random variables, Ann. Probab. 11 (1983), no. 3, 765–771. MR 704563
  • J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
  • Kemperman, J.H.B. and Smit, J.C. (1974). Sharp upper and lower bounds for the moments of a martingale. Adv. Appl. Prob. 6 244–245.
  • Lutz Mattner, Mean absolute deviations of sample means and minimally concentrated binomials, Ann. Probab. 31 (2003), no. 2, 914–925. MR 1964953, DOI 10.1214/aop/1048516540
  • Mattner, L. (2010). Sums of norm spheres are norm shells and lower triangle inequalities are sharp. Math. Semesterber. 57 11–16.
  • Iosif Pinelis, Spherically symmetric functions with a convex second derivative and applications to extremal probabilistic problems, Math. Inequal. Appl. 5 (2002), no. 1, 7–26. MR 1880267, DOI 10.7153/mia-05-02
  • R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
  • Bengt von Bahr and Carl-Gustav Esseen, Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r\leq 2$, Ann. Math. Statist. 36 (1965), 299–303. MR 170407, DOI 10.1214/aoms/1177700291
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60G42, 60E15, 26B25
  • Retrieve articles in all journals with MSC (2000): 60G42, 60E15, 26B25
Additional Information
  • Lutz Mattner
  • Affiliation: Fachbereich IV - Mathematik, Universität Trier, 54286 Trier, Germany
  • MR Author ID: 315405
  • Email: mattner@uni-trier.de
  • Uwe Rösler
  • Affiliation: Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
  • Email: roesler@math.uni-kiel.de
  • Received by editor(s): April 16, 2009
  • Received by editor(s) in revised form: April 16, 2010
  • Published electronically: August 30, 2010
  • Communicated by: Richard C. Bradley
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 139 (2011), 735-746
  • MSC (2000): Primary 60G42, 60E15; Secondary 26B25
  • DOI: https://doi.org/10.1090/S0002-9939-2010-10548-8
  • MathSciNet review: 2736352