Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 

 

Generalized multiplicative domains and quantum error correction


Authors: Nathaniel Johnston and David W. Kribs
Journal: Proc. Amer. Math. Soc. 139 (2011), 627-639
MSC (2010): Primary 46L05, 47L05, 46N50
Published electronically: July 26, 2010
MathSciNet review: 2736344
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a completely positive map, we introduce a set of algebras that we refer to as its generalized multiplicative domains. These algebras are generalizations of the traditional multiplicative domain of a completely positive map, and we derive a characterization of them in the unital, trace-preserving case, in other words the case of unital quantum channels, that extends Choi's characterization of the multiplicative domains of unital maps. We also derive a characterization that is in the same flavour as a well-known characterization of bimodules, and we use these algebras to provide a new representation-theoretic description of quantum error-correcting codes that extends previous results for unitarily-correctable codes, noiseless subsystems and decoherence-free subspaces.


References [Enhancements On Off] (What's this?)

  • 1. S. A. Aly, A. Klappenecker, Subsystem code constructions. IEEE International Symposium on Information Theory, ISIT (2008), 369-373.
  • 2. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A, 73 012340 (2006).
  • 3. Charles H. Bennett, David P. DiVincenzo, John A. Smolin, and William K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A (3) 54 (1996), no. 5, 3824–3851. MR 1418618, 10.1103/PhysRevA.54.3824
  • 4. C. Beny, A. Kempf, D. W. Kribs, Generalization of Quantum Error Correction via the Heisenberg Picture. Phys. Rev. Lett., 98 100502 (2007).
  • 5. C. Beny, D. W. Kribs, A. Pasieka, Algebraic formulation of quantum error correction. Int. J. Quantum Inf., 6 (2008), 597-603.
  • 6. R. Blume-Kohout, H.K. Ng, D. Poulin, L. Viola, Characterizing the structure of preserved information in quantum processes. Phys. Rev. Lett. 100, 030501 (2008).
  • 7. Man Duen Choi, A Schwarz inequality for positive linear maps on 𝐶*-algebras, Illinois J. Math. 18 (1974), 565–574. MR 0355615
  • 8. Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra and Appl. 10 (1975), 285–290. MR 0376726
  • 9. Man-Duen Choi, Nathaniel Johnston, and David W. Kribs, The multiplicative domain in quantum error correction, J. Phys. A 42 (2009), no. 24, 245303, 15. MR 2515540, 10.1088/1751-8113/42/24/245303
  • 10. M. D. Choi, D. W. Kribs, Method to Find Quantum Noiseless Subsystems. Phys. Rev. Lett. 96, 050501 (2006).
  • 11. Kenneth R. Davidson, 𝐶*-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012
  • 12. L.-M. Duan G.-C. Guo, Preserving Coherence in Quantum Computation by Pairing Quantum Bits. Phys. Rev. Lett. 79, 1953 (1997).
  • 13. Daniel Gottesman, An introduction to quantum error correction, Quantum computation: a grand mathematical challenge for the twenty-first century and the millennium (Washington, DC, 2000) Proc. Sympos. Appl. Math., vol. 58, Amer. Math. Soc., Providence, RI, 2002, pp. 221–235. MR 1922900, 10.1090/psapm/058/1922900
  • 14. Daniel Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound, Phys. Rev. A (3) 54 (1996), no. 3, 1862–1868. MR 1450567, 10.1103/PhysRevA.54.1862
  • 15. John A. Holbrook, David W. Kribs, and Raymond Laflamme, Noiseless subsystems and the structure of the commutant in quantum error correction, Quantum Inf. Process. 2 (2003), no. 5, 381–419 (2004). MR 2065970, 10.1023/B:QINP.0000022737.53723.b4
  • 16. J. Kempe, D. Bacon, D. A. Lidar, K. B. Whaley, Theory of decoherence-free fault-tolerant universal quantum compuation. Phys. Rev. A 63, 42307 (2001).
  • 17. Andreas Klappenecker and Pradeep Kiran Sarvepalli, On subsystem codes beating the quantum Hamming or Singleton bound, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2087, 2887–2905. MR 2360182, 10.1098/rspa.2007.0028
  • 18. E. Knill, Protected realizations of quantum information, Phys. Rev. A (3) 74 (2006), no. 4, 042301, 11. MR 2287923, 10.1103/PhysRevA.74.042301
  • 19. E. Knill, R. Laflamme, A. Ashikhmin, H.N. Barnum, L. Viola, W.H. Zurek, Introduction to quantum error correction, Los Alamos Science, November 27, 2002.
  • 20. Emanuel Knill, Raymond Laflamme, and Lorenza Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84 (2000), no. 11, 2525–2528. MR 1745959, 10.1103/PhysRevLett.84.2525
  • 21. D. Kribs, R. Laflamme, D. Poulin, Unified and Generalized Approach to Quantum Error Correction. Phys. Rev. Lett. 94, 180501 (2005).
  • 22. David W. Kribs, Raymond Laflamme, David Poulin, and Maia Lesosky, Operator quantum error correction, Quantum Inf. Comput. 6 (2006), no. 4-5, 382–398. MR 2255992
  • 23. D. W. Kribs, R. W. Spekkens, Quantum Error Correcting Subsystems as Unitarily Recoverable Subsystems. Phys. Rev. A 74, 042329 (2006).
  • 24. D. A. Lidar, I. L. Chuang, K. B. Whaley, Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998).
  • 25. Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2000. MR 1796805
  • 26. G. Massimo Palma, Kalle-Antti Suominen, and Artur K. Ekert, Quantum computers and dissipation, Proc. Roy. Soc. London Ser. A 452 (1996), no. 1946, 567–584. MR 1378845, 10.1098/rspa.1996.0029
  • 27. Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
  • 28. D. Poulin, Stabilizer Formalism for Operator Quantum Error Correction. Phys. Rev. Lett. 95, 230504 (2005).
  • 29. A. Shabani, D.A. Lidar, Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems. Phys. Rev. A 72, 042303 (2005).
  • 30. P. W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).
  • 31. M. Silva, E. Magesan, D. W. Kribs, J. Emerson, Scalable protocol for identification of correctable codes. Phys. Rev. A 78, 012347 (2008).
  • 32. A. M. Steane, Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (1996), no. 5, 793–797. MR 1398854, 10.1103/PhysRevLett.77.793
  • 33. Paolo Zanardi, Stabilizing quantum information, Phys. Rev. A (3) 63 (2001), no. 1, 012301, 4. MR 1816609, 10.1103/PhysRevA.63.012301
  • 34. P. Zanardi, M. Rasetti, Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L05, 47L05, 46N50

Retrieve articles in all journals with MSC (2010): 46L05, 47L05, 46N50


Additional Information

Nathaniel Johnston
Affiliation: Department of Mathematics & Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1

David W. Kribs
Affiliation: Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

DOI: http://dx.doi.org/10.1090/S0002-9939-2010-10556-7
Received by editor(s): July 20, 2009
Received by editor(s) in revised form: March 17, 2010
Published electronically: July 26, 2010
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society