Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Generalized multiplicative domains and quantum error correction


Authors: Nathaniel Johnston and David W. Kribs
Journal: Proc. Amer. Math. Soc. 139 (2011), 627-639
MSC (2010): Primary 46L05, 47L05, 46N50
DOI: https://doi.org/10.1090/S0002-9939-2010-10556-7
Published electronically: July 26, 2010
MathSciNet review: 2736344
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a completely positive map, we introduce a set of algebras that we refer to as its generalized multiplicative domains. These algebras are generalizations of the traditional multiplicative domain of a completely positive map, and we derive a characterization of them in the unital, trace-preserving case, in other words the case of unital quantum channels, that extends Choi's characterization of the multiplicative domains of unital maps. We also derive a characterization that is in the same flavour as a well-known characterization of bimodules, and we use these algebras to provide a new representation-theoretic description of quantum error-correcting codes that extends previous results for unitarily-correctable codes, noiseless subsystems and decoherence-free subspaces.


References [Enhancements On Off] (What's this?)

  • 1. S. A. Aly, A. Klappenecker, Subsystem code constructions. IEEE International Symposium on Information Theory, ISIT (2008), 369-373.
  • 2. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A, 73 012340 (2006).
  • 3. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996). MR 1418618 (97k:81028)
  • 4. C. Beny, A. Kempf, D. W. Kribs, Generalization of Quantum Error Correction via the Heisenberg Picture. Phys. Rev. Lett., 98 100502 (2007).
  • 5. C. Beny, D. W. Kribs, A. Pasieka, Algebraic formulation of quantum error correction. Int. J. Quantum Inf., 6 (2008), 597-603.
  • 6. R. Blume-Kohout, H.K. Ng, D. Poulin, L. Viola, Characterizing the structure of preserved information in quantum processes. Phys. Rev. Lett. 100, 030501 (2008).
  • 7. M.-D. Choi, A Schwarz inequality for positive linear maps on C$ ^*$-algebras. Illinois J. Math., 18 (1974), 565-574. MR 0355615 (50:8089)
  • 8. M.-D. Choi, Completely positive linear maps on complex matrices. Lin. Alg. and Its Applications 10 (1975), 285-290. MR 0376726 (51:12901)
  • 9. M.-D. Choi, N. Johnston, D. W. Kribs, The Multiplicative Domain in Quantum Error Correction. J. Phys. A: Math. Theor. 42, 245303 (2009). MR 2515540 (2010f:81074)
  • 10. M. D. Choi, D. W. Kribs, Method to Find Quantum Noiseless Subsystems. Phys. Rev. Lett. 96, 050501 (2006).
  • 11. K. R. Davidson, $ C^*$-algebras by example, Fields Institute Monographs, 6. American Mathematical Society, Providence, RI, 1996. MR 1402012 (97i:46095)
  • 12. L.-M. Duan G.-C. Guo, Preserving Coherence in Quantum Computation by Pairing Quantum Bits. Phys. Rev. Lett. 79, 1953 (1997).
  • 13. D. Gottesman, An introduction to quantum error correction, in Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium, ed. S. J. Lomonaco, Jr., pp. 221-235, American Mathematical Society, Providence, RI, 2002. MR 1922900
  • 14. D. Gottesman, Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862 (1996). MR 1450567 (98c:94033)
  • 15. J. A. Holbrook, D. W. Kribs, and R. Laflamme, Noiseless subsystems and the structure of the commutant in quantum error correction. Quantum Inf. Proc. 2, 381 (2004). MR 2065970 (2005f:94169)
  • 16. J. Kempe, D. Bacon, D. A. Lidar, K. B. Whaley, Theory of decoherence-free fault-tolerant universal quantum compuation. Phys. Rev. A 63, 42307 (2001).
  • 17. A. Klappenecker, P. K. Sarvepalli, On Subsystem Codes beating the quantum Hamming or Singleton Bound. Proc. Roy. Soc. A 463, (2007). MR 2360182 (2010c:81070)
  • 18. E. Knill, Protected realizations of quantum information. Phys. Rev. A 74, 042301 (2006). MR 2287923 (2008a:81047)
  • 19. E. Knill, R. Laflamme, A. Ashikhmin, H.N. Barnum, L. Viola, W.H. Zurek, Introduction to quantum error correction, Los Alamos Science, November 27, 2002.
  • 20. E. Knill, R. Laflamme, L. Viola, Theory of quantum error correction for general noise, Phys. Rev. Lett. 84, 2525 (2000). MR 1745959 (2000j:81036)
  • 21. D. Kribs, R. Laflamme, D. Poulin, Unified and Generalized Approach to Quantum Error Correction. Phys. Rev. Lett. 94, 180501 (2005).
  • 22. D. W. Kribs, R. Laflamme, D. Poulin, M. Lesosky, Operator quantum error correction. Quantum Inf. & Comp. 6 (2006), 382-398. MR 2255992 (2007i:94121)
  • 23. D. W. Kribs, R. W. Spekkens, Quantum Error Correcting Subsystems as Unitarily Recoverable Subsystems. Phys. Rev. A 74, 042329 (2006).
  • 24. D. A. Lidar, I. L. Chuang, K. B. Whaley, Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998).
  • 25. M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, 2000. MR 1796805 (2003j:81038)
  • 26. G. Palma, K.-A. Suominen, A. Ekert, Quantum Computers and Dissipation. Proc. Royal Soc. A 452, 567 (1996). MR 1378845 (96j:81030)
  • 27. V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, Cambridge, 2002. MR 1976867 (2004c:46118)
  • 28. D. Poulin, Stabilizer Formalism for Operator Quantum Error Correction. Phys. Rev. Lett. 95, 230504 (2005).
  • 29. A. Shabani, D.A. Lidar, Theory of Initialization-Free Decoherence-Free Subspaces and Subsystems. Phys. Rev. A 72, 042303 (2005).
  • 30. P. W. Shor, Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).
  • 31. M. Silva, E. Magesan, D. W. Kribs, J. Emerson, Scalable protocol for identification of correctable codes. Phys. Rev. A 78, 012347 (2008).
  • 32. A. M. Steane, Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996). MR 1398854 (97d:81030)
  • 33. P. Zanardi, Stabilizing Quantum Information. Phys. Rev. A 63, 12301 (2001). MR 1816609 (2001m:81052)
  • 34. P. Zanardi, M. Rasetti, Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L05, 47L05, 46N50

Retrieve articles in all journals with MSC (2010): 46L05, 47L05, 46N50


Additional Information

Nathaniel Johnston
Affiliation: Department of Mathematics & Statistics, University of Guelph, Guelph, ON, Canada N1G 2W1

David W. Kribs
Affiliation: Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

DOI: https://doi.org/10.1090/S0002-9939-2010-10556-7
Received by editor(s): July 20, 2009
Received by editor(s) in revised form: March 17, 2010
Published electronically: July 26, 2010
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society