Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Landau theorem and Bloch theorem for planar harmonic and pluriharmonic mappings


Authors: Huaihui Chen and Paul M. Gauthier
Journal: Proc. Amer. Math. Soc. 139 (2011), 583-595
MSC (2010): Primary 30C99; Secondary 30C62
DOI: https://doi.org/10.1090/S0002-9939-2010-10659-7
Published electronically: August 26, 2010
MathSciNet review: 2736340
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a normalized quasiregular pluriharmonic mapping $ f$ of the unit ball $ B^n$ of $ \mathbb{C}^n$ into $ \mathbb{C}^n$, we estimate the supremum of numbers $ R$ such that some subdomain $ \Omega$ of the ball is mapped by $ f$ diffeomorphically onto some ball of radius $ R$. Our estimates significantly improve earlier estimates, even in the case of harmonic functions in the disc.


References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359-364. MR 1501949
  • 2. S. Bochner, Bloch's theorem for real variables, Bull. Amer. Math. Soc. 52 (1946), 715-719. MR 0017814 (8:204a)
  • 3. M. Bonk, On Bloch's constant, Proc. Amer. Math. Soc. 110 (1990), 889-894. MR 979048 (91c:30011)
  • 4. D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Sklodowska Sect. A 48 (1994), 12-42. MR 1346560 (96m:30025)
  • 5. H. Chen and P. M. Gauthier, On Bloch's constant, J. Anal. Math. 69 (1996), 275-291. MR 1428103 (97j:30002)
  • 6. H. Chen and P. M. Gauthier, Bloch constants in several variables, Trans. Amer. Math. Soc. 353 (2001), 1371-1386. MR 1806737 (2001m:32035)
  • 7. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings. Proc. Amer. Math. Soc. 128 (2000), 3231-3240. MR 1707142 (2001b:30027)
  • 8. F. Colonna, The Bloch constant of bounded harmonic mappings, Indiana Univ. Math. J. 38 (1989), 829-840. MR 1029679 (90k:31002)
  • 9. A. Grigoryan, Landau and Bloch theorems for harmonic mappings, Complex Variable Theory Appl., 51 (2006), 81-87. MR 2201260 (2006i:30026)
  • 10. L. A. Harris, On the size of balls covered by analytic transformations, Monatsh. Math. 83 (1977), 9-23. MR 0435454 (55:8414)
  • 11. E. Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101-105. MR 0104933 (21:3683)
  • 12. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692. MR 1563404
  • 13. M. Liu, Estimates on Bloch constants for planar harmonic mappings, Science in China Series A: Mathematics 52 (2009), 87-93. MR 2471518 (2010a:30036)
  • 14. A. Marden and S. Rickman, Holomorphic mappings of bounded distortion, Proc. Amer. Math. Soc. 46 (1974), 225-228. MR 0348146 (50:644)
  • 15. W. Rudin, Function Theory in the Unit Ball of $ {\bf C}^n$, Springer-Verlag, New York, Heidelberg, Berlin, 1980, 23-30. MR 601594 (82i:32002)
  • 16. S. Stoïlow, Leçons sur les principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1938. MR 0082545 (18:568b)
  • 17. J. C. Wood, Lewy's theorem fails in higher dimensions, Math. Scand. 69 (1991), 166. MR 1156423 (93a:58024)
  • 18. H. Wu, Normal families of holomorphic mappings, Acta Math. 119 (1967), 193-233. MR 0224869 (37:468)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C99, 30C62

Retrieve articles in all journals with MSC (2010): 30C99, 30C62


Additional Information

Huaihui Chen
Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, 210097, People’s Republic of China
Email: hhchen@njnu.edu.cn

Paul M. Gauthier
Affiliation: Département de Mathématiques et de Statistique, Université de Montréal, CP 6128-Centreville, Montreal, QC, H3C 3J7 Canada
Email: gauthier@dms.umontreal.ca

DOI: https://doi.org/10.1090/S0002-9939-2010-10659-7
Keywords: Bloch constant, harmonic mappings
Received by editor(s): March 11, 2010
Published electronically: August 26, 2010
Additional Notes: This research was supported in part by NSFC (China, Grant No. 10671093) and NSERC (Canada)
Communicated by: Mario Bonk
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society