GENERATING THE INFINITE SYMMETRIC GROUP
USING A CLOSED SUBGROUP
AND THE LEAST NUMBER OF OTHER ELEMENTS

J. D. MITCHELL, M. MORAYNE, AND Y. PÉRESSE

(Communicated by Julia Knight)

Abstract. Let S_∞ denote the symmetric group on the natural numbers \mathbb{N}. Then S_∞ is a Polish group with the topology inherited from $\mathbb{N}^\mathbb{N}$ with the product topology and the discrete topology on \mathbb{N}. Let d denote the least cardinality of a dominating family for $\mathbb{N}^\mathbb{N}$ and let c denote the continuum. Using theorems of Galvin, and Bergman and Shelah we prove that if G is any subgroup of S_∞ that is closed in the above topology and H is a subset of S_∞ with least cardinality such that $G \cup H$ generates S_∞, then $|H| \in \{0, 1, d, c\}$.

The symmetric group S_∞ is a Polish group under the topology inherited from the product topology on $\mathbb{N}^\mathbb{N}$ with the discrete topology on \mathbb{N}; see [8, Section 9.B(7)] for further details. We will refer to subgroups G of S_∞ that are closed in this topology as closed subgroups. It is a well-known fact that the closed subgroups of S_∞ are precisely the automorphism groups of relational structures on \mathbb{N}; see, for example, [4, Theorem 5.8]. Such automorphism groups have been widely investigated; see for example [9] and the references therein.

The theorem of Bergman and Shelah from [3] on which our main theorem (Theorem 1.3) is based involves the following equivalence relation \approx on subgroups of S_∞. Let G and H be (not necessarily closed) subgroups of S_∞. Then $G \approx H$ if there exists a finite $F \subseteq S_\infty$ such that the subgroup $\langle H, F \rangle$ generated by H and F equals $\langle G, F \rangle$.

Throughout, we write functions to the left of their argument and compose from right to left. The following two subgroups of S_∞ are representatives of two of the classes under \approx. Let A be a partition of \mathbb{N} into sets A_1, A_2, \ldots where $|A_i| = i$ for all $i \geq 1$ and let B be a partition of \mathbb{N} into sets B_0, B_1, \ldots with $|B_i| = 2$ for all $i \in \mathbb{N}$. Then define

$$H_N = \{ f \in S_\infty : f(A_i) = A_i \text{ for all } i \geq 1 \},$$
$$H_2 = \{ f \in S_\infty : f(B_i) = B_i \text{ for all } i \in \mathbb{N} \}.$$

It is straightforward to verify that H_N and H_2 are closed subgroups of S_∞. If G is a subgroup of S_∞ and $\Sigma \subseteq \mathbb{N}$, then the pointwise stabilizer of Σ in G is the subgroup $G(\Sigma) = \{ f \in G : f(\sigma) = \sigma \text{ for all } \sigma \in \Sigma \}$. We require the following slightly weaker version of the main theorem in Bergman and Shelah [3].

Received by the editors February 4, 2010.
2010 Mathematics Subject Classification. Primary 20B07; Secondary 54H11.

©2010 American Mathematical Society
Theorem 1.1 (Bergman and Shelah [3]). Let G be a closed subgroup of S_∞. Then exactly one of the following holds:

(i) $G_{(\Sigma)}$ has an infinite orbit for all finite $\Sigma \subseteq \mathbb{N}$ and $G \approx S_\infty$;
(ii) $G_{(\Sigma)}$ has only finite orbits for some finite $\Sigma \subseteq \mathbb{N}$, $G_{(\Gamma)}$ has orbits of unbounded length for all finite $\Gamma \subseteq \mathbb{N}$, and $G \approx H_3$;
(iii) $G_{(\Sigma)}$ has orbits of bounded length for some finite $\Sigma \subseteq \mathbb{N}$ and $G \approx H_2$ or $G \approx \{1_N\}$.

It is also shown in [3] that no two of the groups $\{1_N\}$, H_2, H_3, and S_∞ are equivalent under \approx.

Mesyan [13] considered the natural analogue of \approx on the closed subsemigroups of the semigroup $\mathbb{N}^\mathbb{N}$. The situation is much more complicated in $\mathbb{N}^\mathbb{N}$, as in particular, there are infinitely many distinct equivalence classes in this setting. However, if the class of closed subsemigroups considered is restricted to endomorphism semigroups of bipartite graphs or partial orders on \mathbb{N}, then again a classification can be achieved. In particular, in [14] it is shown that such semigroups lie in precisely two equivalence classes under the analogue of \approx. In [12] Mesyan shows that certain closed subrings of the direct sum of \aleph_0 many copies of a simple ring fall into two distinct equivalence classes under the appropriate analogue of \approx.

Macpherson and Neumann [11] Theorem 1.1 showed that S_∞ is not the union of a countable chain of proper subgroups. Thus if G is any subgroup of S_∞ and $H \leq S_\infty$ with least cardinality such that $(G, H) = S_\infty$, then $|H| \neq \aleph_0$. The following theorem of Galvin implies that, in fact, $|H| \leq 1$ or $|H| > \aleph_0$.

Theorem 1.2 (Theorem 5.8 in Galvin [6]). Let G be subgroup of S_∞ such that there exists a countable $H \subseteq S_\infty$ with $(G, H) = S_\infty$. Then there exists $f \in S_\infty$ such that $(G, f) = S_\infty$.

So, as Bergman and Shelah comment in [3], there is a gap between those subgroups of S_∞ over which it is ‘easy’ to generate S_∞ and those where it is ‘difficult’. The aim of this paper is, in some sense, to make this comment more precise in the case of closed subgroups of S_∞.

If G is a subgroup of the symmetric group S_∞, then, for the sake of brevity, we will denote by $\text{rank}(S_\infty : G)$ the least cardinality of a subset H of S_∞ such that the group generated by $G \cup H$ equals S_∞. By Theorem 1.2, $\text{rank}(S_\infty : G) \leq 1$ if and only if $S_\infty \approx G$. Also if $G \neq S_\infty$ and H is a subgroup of S_∞ such that $G \approx H$, then $\text{rank}(S_\infty : G) = \text{rank}(S_\infty : H) > \aleph_0$. The cardinal rank($S_\infty : G$) will be referred to as the relative rank of G in S_∞. Relative ranks have been studied in the context of semigroups; see [3], [7], or [14] for further details.

A subset D of $\mathbb{N}^\mathbb{N}$ satisfying the following condition is called a dominating family for $\mathbb{N}^\mathbb{N}$:

for all $f \in \mathbb{N}^\mathbb{N}$ there exists $g \in D$ such that $f(n) \leq g(n)$ for all $n \in \mathbb{N}$.

The least cardinality of a dominating family for $\mathbb{N}^\mathbb{N}$ is denoted by \mathfrak{d}, and the continuum is denoted by \mathfrak{c}. It is clear that $\aleph_1 \leq \mathfrak{d} \leq \mathfrak{c}$. If the continuum hypothesis holds, then $\aleph_1 = \mathfrak{d} = \mathfrak{c}$. However, the following theories are also consistent: $\text{ZFC} + (\mathfrak{d} = \aleph_1 < \mathfrak{c})$ and $\text{ZFC} + (\aleph_1 < \mathfrak{d} = \aleph_2 = \mathfrak{c})$; see [2] for further details.

The following is the main theorem of this paper.

Theorem 1.3. Let G be a closed subgroup of S_∞. Then exactly one of the following holds:
(i) $G_{(\Sigma)}$ has an infinite orbit for all finite $\Sigma \subseteq \mathbb{N}$ and $\operatorname{rank}(S_{\infty} : G) \in \{0, 1\}$;
(ii) $G_{(\Sigma)}$ has only finite orbits for some finite $\Sigma \subseteq \mathbb{N}$, $G_{(\Gamma)}$ has orbits of unbounded length for all finite $\Gamma \subseteq \mathbb{N}$, and $\operatorname{rank}(S_{\infty} : G) = \delta$;
(iii) $G_{(\Sigma)}$ has orbits of bounded length for some finite subset Σ of \mathbb{N} and $\operatorname{rank}(S_{\infty} : G) = \epsilon$.

\textbf{Proof.} (i). By assumption and by Theorem 11, $G \approx S_{\infty}$ and so, by Theorem 1.2, it follows that $\operatorname{rank}(S_{\infty} : G) \in \{0, 1\}$.

(ii). Again by assumption and by Theorem 1.4, $G \approx H_N$ and so $\operatorname{rank}(S_{\infty} : G) = \operatorname{rank}(S_{\infty} : H_N)$. Hence it suffices to prove that $\operatorname{rank}(S_{\infty} : H_N) = \delta$.

We start by showing that $\operatorname{rank}(S_{\infty} : H_N) \geq \delta$. By Tychonoff’s Theorem [8, Proposition 4.1(vi)], H_N is compact. Let $U \subseteq S_{\infty}$ be such that $\langle H_N, U \rangle = S_{\infty}$. Since $H_N \not\approx S_{\infty}$, it follows that $|U| > N_0$. The group $\langle H_N, U \rangle$ is the union of the sets $H_N^u H_N^u \cdots H_N^u$, where $u_0, u_1, \ldots, u_n \in U \cup U^{-1}$ (where $U^{-1} = \{ u^{-1} : u \in U \}$). Since H_N is compact, right multiplication in any topological group is continuous, and the continuous image of a compact set is compact, it follows that each H_N^u is compact. Hence, as the product of compact sets in a topological group is compact [8 Proposition 1.4.31], $H_N u_0 H_N u_{n-1} \cdots u_0 H_N$ is compact. In other words, $\langle H_N, U \rangle$ is the union of $|U|$ compact sets. It is straightforward to prove that the minimum number of compact subsets covering \mathbb{N}^N is δ. Hence, since S_{∞} and \mathbb{N}^N are homeomorphic by [8, Theorem 7.7], it follows that the minimum number of compact subsets covering S_{∞} is δ. Thus $|U| \geq \delta$ and so $\operatorname{rank}(S_{\infty} : H_N) \geq \delta$.

We will now prove that $\operatorname{rank}(S_{\infty} : H_N) \leq \delta$. Let $M = \{m_0, m_1, \ldots\}$ be any subset of \mathbb{N} with $|M| = |\mathbb{N} \setminus M| = |\mathbb{N}|$. Then, by Bergman and Shelah’s Theorem 11.1, the pointwise stabilizer $S_{(N \setminus M)}$ of $\mathbb{N} \setminus M$ in S_{∞} satisfies $S_{(N \setminus M)} \approx S_{\infty}$. Hence it suffices to prove that there exists $X \subseteq S_{\infty}$ with $|X| = \delta$ such that $S_{(N \setminus M)} \subseteq \langle H_N, X \rangle$.

Let D be any dominating family for \mathbb{N}^N with $|D| = \delta$. Replacing any $f \in D$ by $f' \in \mathbb{N}^N$ defined recursively by setting $f'(0) = f(0) + 2$ and $f'(i) = \max\{f'(i - 1) + 1, f(i)\}$ for all $i > 0$, we may assume that D consists entirely of strictly increasing functions f' where $f'(i) \geq 2$ for all $i \in \mathbb{N}$. We denote by $T(f)$ the set of all involutions $g \in S_{(N \setminus M)}$ (elements of order 2) such that $g(m_i) \in \{m_0, m_1, \ldots, m_{f(i)}\}$ for all $i \in \mathbb{N}$. Since D is a dominating family, $\bigcup_{f \in D} T(f)$ is the set of all involutions in $S_{(N \setminus M)}$. The symmetric group S_{∞} is generated by its involutions [9, Lemma 2.2], and so certainly $S_{(N \setminus M)}$ is also generated by its involutions. Hence

$$\langle \bigcup_{f \in D} T(f) \rangle = S_{(N \setminus M)}.$$

We will prove that for all $f \in D$ there exist $g_f, h_f \in S_{\infty}$ such that $T(f) \subseteq \langle H_N, g_f, h_f \rangle$. Consequently,

$$S_{(N \setminus M)} = \langle \bigcup_{f \in D} T(f) \rangle \subseteq \langle H_N \cup \{g_f, h_f : f \in D\} \rangle.$$

Thus $\operatorname{rank}(S_{\infty} : H_N) \leq |D| = \delta$.

Let $f \in D$ be arbitrary and let N be any subset of $\mathbb{N} \setminus M$ such that $|N| = |\mathbb{N} \setminus (M \cup N)| = |\mathbb{N}|$. Partition N into sets N_0, N_1, \ldots where $N_i = \{n_{i,0}, n_{i,1}, \ldots, n_{i,f(i)}\}$ and define $N^*_i = \{n_{r,i}, n_{r+1,i}, \ldots, n_{f(i),i}\}$ where $r = \min\{j \in \{0, 1, \ldots, f(i)\} : i \leq f(j)\}$.

The subgroup H_N was defined as

$$H_N = \{ g \in S_\infty : g(A_i) = A_i \text{ for all } i \geq 1 \},$$

where A is a partition of \mathbb{N} into sets A_1, A_2, \ldots satisfying $|A_i| = i$ for all $i \geq 1$. Hence, since $f(i) \geq 2$ for all $i \in \mathbb{N}$, it follows that $f(i) + 2 \leq |A_{2f(i)}| = 2f(i)$. Since the complements of $M \cup N$ and $\bigcup_{i \in \mathbb{N}} A_{2f(i)}$ in \mathbb{N} are infinite, there exist $g_f, h_f \in S_\infty$ such that

$$g_f(N_i \cup \{ m_i \}) \subseteq A_{2f(i)} \text{ and } h_f(N_i^* \cup \{ m_i \}) \subseteq A_{2f(i)}$$

for all $i \in \mathbb{N}$.

Let $t \in T(f)$ be arbitrary and let $k \in S_\infty$ be such that $t(m_i) = m_{k(i)}$ for all $i \in \mathbb{N}$. Note that k is an involution since t is an involution. It follows from the definition of $T(f)$ that $k(i) \leq f(i)$ for all $i \in \mathbb{N}$ and so the element $n_{i,k(i)}$ exists for all $i \in \mathbb{N}$. Hence there exist involutions $p, q \in S_\infty$ such that p swaps m_i and $n_{i,k(i)}$ for all $i \in \mathbb{N}$ with $i < k(i)$, q swaps $m_{k(i)}$ and $n_{i,k(i)}$ for all $i \in \mathbb{N}$ with $i < k(i)$, and all other elements are fixed pointwise by p and q.

Since $m_i, n_{i,k(i)} \in N_i \cup \{ m_i \}$, we have that $g_f(m_i), g_f(n_{i,k(i)}) \in A_{2f(i)}$ for all $i \in \mathbb{N}$. Hence the involution g_fpqf^{-1}, which swaps $g_f(m_i)$ and $g_f(n_{i,k(i)})$ for all $i \in \mathbb{N}$ with $i < k(i)$, is an element of H_N. Likewise, since $m_{k(i)}, n_{i,k(i)} \in N^*_{k(i)} \cup \{ m_{k(i)} \}$, we have that $h_fgh^{-1}_f \in H_N$. Therefore $p, q \in \langle H_N, g_f, h_f \rangle$. Hence, as $\rho(m_{k(i)}) = m_{k(i)}$ and $\rho(m_i) = m_i$ for all $i \in \mathbb{N}$ with $i < k(i)$, it follows that $t = pqp \in \langle H_N, g_f, h_f \rangle$, as required.

(iii) It suffices to prove that rank($S_\infty : H_2$) = \mathcal{C} and rank($S_\infty : \{ 1_N \}$) = \mathcal{C}. Clearly, rank($S_\infty : \{ 1_N \}$) = \mathcal{C}, as $\{ 1_N \}$ is countable. We prove that rank($S_\infty : H_2$) = \mathcal{C} using the notion of relative ranks for semigroups. Replacing ‘the group generated by’ by ‘the semigroup generated by’ in the definition, it is clear what we mean by the relative rank of a subset of a semigroup. If rank($S_\infty : H_2$) < \mathcal{C}, then there exists $U \subseteq S_\infty$ with $|U| < \mathcal{C}$ and $\langle H_2, U \rangle = S_\infty$. Hence S_∞ equals the semigroup generated by H_2 and $U \cup U^{-1}$. By [7 Theorem 3.3], there exist $f, g \in \mathbb{N}^N$ such that the semigroup generated by $S_\infty \cup \{ f, g \}$ is \mathbb{N}^N. Thus the semigroup relative rank of H_2 in \mathbb{N}^N is at most $|U \cup U^{-1} \cup \{ f, g \}|$ and, in particular, it is strictly less than \mathcal{C}. Hence, by the contrapositive, to prove that rank($S_\infty : H_2$) = \mathcal{C} it suffices to show that the semigroup relative rank of H_2 in \mathbb{N}^N is \mathcal{C}.

Let A be a subset of \mathbb{N}^N such that H_2 and A generate \mathbb{N}^N as a semigroup. Seeking a contradiction, assume that $|A| < \mathcal{C}$. The semigroup \mathbb{N}^N is the union of the sets

$$B_{(a_0, a_1, \ldots, a_m)} = \{ h_{m+1}a_mh_m \cdots h_1a_0h_0 : h_0, h_1, \ldots, h_{m+1} \in H_2 \}$$

over all tuples $(a_0, a_1, \ldots, a_m) \in A^{m+1}$ and all $m \in \mathbb{N}$.

A subset F of \mathbb{N}^N is called almost disjoint if the set $\{ i \in \mathbb{N} : f(i) = g(i) \}$ is finite for all $f, g \in F$. Let F be an almost disjoint subset of \mathbb{N}^N with $|F| = \mathcal{C}$. The existence of such an F is well-known; see, for example, [10 Theorem 1.3]. Since $|F| = \mathcal{C}$ and $|A \cup A^2 \cup \cdots| < \mathcal{C}$, there exist $n \in \mathbb{N}$ and $(b_0, b_1, \ldots, b_n) \in A^{n+1}$ such that $B_{(b_0, b_1, \ldots, b_n)} \cap F$ is infinite.

By the definition of H_2,

$$\left| \{ f(i) : f \in B_{(b_0, b_1, \ldots, b_n)} \} \right| \leq 2^{n+2}$$

for all $i \in \mathbb{N}$. Let $N = 2^{n+2}$ and let f_0, f_1, \ldots, f_N be distinct elements of $B_{(b_0, b_1, \ldots, b_n)} \cap F$. Then, since F is a family of almost disjoint functions, there exists $i \in \mathbb{N}$ such that $f_0(i), f_1(i), \ldots, f_N(i)$ are distinct, contradicting (1).
We do not know a subgroup of S_∞ or a subsemigroup of $\mathbb{N}^\mathbb{N}$ with an uncountable relative rank not equal to δ or c. So, we ask: Does there exist a subgroup G of S_∞ or a subsemigroup S of $\mathbb{N}^\mathbb{N}$ such that $\text{rank}(S_\infty : G), \text{rank}(\mathbb{N}^\mathbb{N} : S) \notin \{0, 1, 2, \delta, c\}$?

References

Mathematics Institute, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland
E-mail address: jdm3@st-and.ac.uk
URL: tinyurl.com/jdmitchell

Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
E-mail address: michal.morayne@pwr.wroc.pl

Mathematics Institute, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9SS, Scotland
E-mail address: yhpl@st-and.ac.uk