Inequivalent measures of noncompactness and the radius of the essential spectrum

Authors:
John Mallet-Paret and Roger D. Nussbaum

Journal:
Proc. Amer. Math. Soc. **139** (2011), 917-930

MSC (2010):
Primary 47H08, 46B20; Secondary 46B25, 46B45, 47A10, 47H10

DOI:
https://doi.org/10.1090/S0002-9939-2010-10511-7

Published electronically:
October 29, 2010

MathSciNet review:
2745644

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Kuratowski measure of noncompactness on an infinite dimensional Banach space assigns to each bounded set in a nonnegative real number by the formula

Further, if is any complex, infinite dimensional Banach space and is a bounded linear map, one can define , where denotes the essential spectrum of . One can also define

Our motivation for this study comes from questions concerning eigenvectors of linear and nonlinear cone-preserving maps.

**1.**R.R. Akhmerov, M.I. Kamenskij, A.S. Potapov, A.E. Rodkina, and B.N. Sadovskij,*Measures of Noncompactness and Condensing Operators*(in Russian), Nauka, Novosibirsk, 1986; English translation: Birkhäuser Verlag, Basel, 1992. MR**1153247 (92k:47104)****2.**J. Appell, Measures of noncompactness, condensing operators and fixed points: An application-oriented survey,*Fixed Point Theory***6**(2005), pp. 157-229. MR**2196709 (2006h:47121)****3.**J.M. Ayerbe Toledano, T. Dominguez Benavides, and G. López Acedo,*Measures of Noncompactness in Metric Fixed Point Theory*, Birkhäuser Verlag, Basel, 1997. MR**1483889 (99e:47070)****4.**J. Banaś and K. Goebel,*Measures of Noncompactness in Banach Spaces*, Marcel Dekker, New York, 1980. MR**591679 (82f:47066)****5.**F.E. Browder, On the spectral theory of elliptic differential operators,*Math. Ann.***142**(1961), pp. 22-130. MR**0209909 (35:804)****6.**G. Darbo, Punti uniti in trasformazioni a condominio non compatto,*Rend. Sem. Mat. Univ. Padova***24**(1955), pp. 84-92. MR**0070164 (16:1140f)****7.**M. Furi and A. Vignoli, On a property of the unit sphere in a linear normed space,*Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.***18**(1970), pp. 333-334. MR**0264373 (41:8969)****8.**I. Gohberg and M.G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators,*Amer. Math. Soc. Translations, Series 2*, vol. 13 (1960), pp. 185-264. MR**0113146 (22:3984)****9.**T. Kato,*Perturbation Theory for Linear Operators*, Springer-Verlag, New York, 1966. MR**0203473 (34:3324)****10.**K. Kuratowski, Sur les espaces complets,*Fund. Math.***15**(1930), pp. 301-309.**11.**J. Mallet-Paret and R.D. Nussbaum, Eigenvalues for a class of homogeneous cone maps arising from max-plus operators,*Discrete and Continuous Dynamical Systems***8**(2002), pp. 519-562. MR**1897866 (2003c:47088)****12.**J. Mallet-Paret and R.D. Nussbaum, Inequivalent measures of noncompactness,*Ann. Mat. Pura Appl.*, to appear.**13.**J. Mallet-Paret and R.D. Nussbaum, Generalizing the Krein-Rutman theorem, measures of noncompactness and the fixed point index,*J. Fixed Point Theory and Appl.***7**(2010), pp. 103-143.**14.**R.D. Nussbaum, The radius of the essential spectrum,*Duke Math. J.***37**(1970), pp. 473-478. MR**0264434 (41:9028)****15.**R.D. Nussbaum, A generalization of the Ascoli theorem and an application to functional differential equations,*J. Math. Anal. Appl.***35**(1971), pp. 600-610. MR**0289898 (44:7085)****16.**R.D. Nussbaum, The fixed point index for local condensing maps,*Ann. Mat. Pura Appl.***89**(1971), pp. 217-258. MR**0312341 (47:903)****17.**R.D. Nussbaum, Eigenvalues of nonlinear operators and the linear Krein-Rutman theorem, in*Fixed Point Theory*, Springer Lecture Notes in Math., vol. 886, Springer-Verlag, Berlin, 1981, pp. 309-331. MR**643014 (83b:47068)****18.**B.N. Sadovskij, Limit-compact and condensing operators, Uspekhi Mat. Nauk**27**(1972), pp. 81-146 (in Russian). MR**0428132 (55:1161)****19.**F. Wolf, On the essential spectrum of partial differential boundary problems,*Comm. Pure Appl. Math.***12**(1959), pp. 211-228. MR**0107750 (21:6472)****20.**B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation,*Duke Math. J.***18**(1951), pp. 599-612. MR**0044020 (13:355f)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
47H08,
46B20,
46B25,
46B45,
47A10,
47H10

Retrieve articles in all journals with MSC (2010): 47H08, 46B20, 46B25, 46B45, 47A10, 47H10

Additional Information

**John Mallet-Paret**

Affiliation:
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912

Email:
jmp@dam.brown.edu

**Roger D. Nussbaum**

Affiliation:
Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854

Email:
nussbaum@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10511-7

Keywords:
Measure of noncompactness,
essential spectral radius,
cone map.

Received by editor(s):
September 21, 2009

Received by editor(s) in revised form:
January 16, 2010

Published electronically:
October 29, 2010

Additional Notes:
The first author was partially supported by NSF Grant DMS-0500674

The second author was partially supported by NSF Grant DMS-0701171

Communicated by:
Nigel J. Kalton

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.