Critical type of Krasnosel'skii fixed point theorem
Authors:
Tian Xiang and Rong Yuan
Journal:
Proc. Amer. Math. Soc. 139 (2011), 10331044
MSC (2010):
Primary 47H08, 47H10, 37C25
Published electronically:
August 2, 2010
MathSciNet review:
2745654
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, by means of the technique of measures of noncompactness, we establish a generalized form of the fixed point theorem for the sum of , where is noncompact, may not be injective, and is not necessarily continuous. The obtained results unify and significantly extend a number of previously known generalizations of the Krasnosel'skii fixed point theorem. The analysis presented here reveals the essential characteristics of the Krasnosel'skii type fixed point theorem in strong topology setups. Further, the results are used to prove the existence of periodic solutions of a nonlinear neutral differential equation with delay in the critical case.
 1.
R.
R. Akhmerov, M.
I. Kamenskiĭ, A.
S. Potapov, A.
E. Rodkina, and B.
N. Sadovskiĭ, Measures of noncompactness and condensing
operators, Operator Theory: Advances and Applications, vol. 55,
Birkhäuser Verlag, Basel, 1992. Translated from the 1986 Russian
original by A. Iacob. MR 1153247
(92k:47104)
 2.
Józef
Banaś and Kazimierz
Goebel, Measures of noncompactness in Banach spaces, Lecture
Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, Inc.,
New York, 1980. MR 591679
(82f:47066)
 3.
Edoardo
Beretta, Fortunata
Solimano, and Yasuhiro
Takeuchi, A mathematical model for drug administration by using the
phagocytosis of red blood cells, J. Math. Biol. 35
(1996), no. 1, 1–19. MR 1478581
(99g:92014), 10.1007/s002850050039
 4.
T.
A. Burton, A fixedpoint theorem of Krasnoselskii, Appl. Math.
Lett. 11 (1998), no. 1, 85–88. MR 1490385
(98i:47053), 10.1016/S08939659(97)001389
 5.
Cleon
S. Barroso and Eduardo
V. Teixeira, A topological and geometric approach to fixed points
results for sum of operators and applications, Nonlinear Anal.
60 (2005), no. 4, 625–650. MR 2109150
(2005i:47087), 10.1016/j.na.2004.09.040
 6.
Shui
Nee Chow, Existence of periodic solutions of autonomous functional
differential equations, J. Differential Equations 15
(1974), 350–378. MR 0336003
(49 #779)
 7.
B.
C. Dhage, Remarks on two fixedpoint theorems involving the sum and
the product of two operators, Comput. Math. Appl. 46
(2003), no. 12, 1779–1785. MR 2018766
(2004i:47104), 10.1016/S08981221(03)902367
 8.
Daniel
Henry, Geometric theory of semilinear parabolic equations,
Lecture Notes in Mathematics, vol. 840, SpringerVerlag, BerlinNew
York, 1981. MR
610244 (83j:35084)
 9.
M.
A. Krasnosel′skiĭ, Two remarks on the method of
successive approximations, Uspehi Mat. Nauk (N.S.) 10
(1955), no. 1(63), 123–127 (Russian). MR 0068119
(16,833a)
 10.
Yongkun
Li and Yang
Kuang, Periodic solutions of periodic delay LotkaVolterra
equations and systems, J. Math. Anal. Appl. 255
(2001), no. 1, 260–280. MR 1813821
(2001k:34133), 10.1006/jmaa.2000.7248
 11.
Yicheng
Liu and Zhixiang
Li, Krasnoselskii type fixed point
theorems and applications, Proc. Amer. Math.
Soc. 136 (2008), no. 4, 1213–1220. MR 2367095
(2008k:47113), 10.1090/S0002993907091903
 12.
Efe
A. Ok, Fixed set theorems of
Krasnoselskiĭ\ type, Proc. Amer. Math.
Soc. 137 (2009), no. 2, 511–518. MR 2448571
(2009f:47099), 10.1090/S0002993908093325
 13.
Joseph
W.H. So, Jianhong
Wu, and Xingfu
Zou, Structured population on two patches: modeling dispersal and
delay, J. Math. Biol. 43 (2001), no. 1,
37–51. MR
1854000 (2003b:92023), 10.1007/s002850100081
 14.
Sehie
Park, Generalizations of the Krasnoselskii fixed point
theorem, Nonlinear Anal. 67 (2007), no. 12,
3401–3410. MR 2350896
(2009a:47111), 10.1016/j.na.2006.10.024
 15.
Jianhong
Wu, Theory and applications of partial functionaldifferential
equations, Applied Mathematical Sciences, vol. 119,
SpringerVerlag, New York, 1996. MR 1415838
(98a:35135)
 16.
Tian
Xiang and Rong
Yuan, A class of expansivetype Krasnosel′skii fixed point
theorems, Nonlinear Anal. 71 (2009), no. 78,
3229–3239. MR 2532845
(2010j:47085), 10.1016/j.na.2009.01.197
 17.
Eberhard
Zeidler, Nonlinear functional analysis and its applications.
I, SpringerVerlag, New York, 1986. Fixedpoint theorems; Translated
from the German by Peter R. Wadsack. MR 816732
(87f:47083)
 1.
 R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators. Birkhäuser, Basel (1992). MR 1153247 (92k:47104)
 2.
 J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York (1980). MR 591679 (82f:47066)
 3.
 E. Beretta, F. Solimano, Y. Takeuchi, A mathematical model for drug administration by using the phagocytosis of red blood cells, J. Math. Biol. 35 (1996), 119. MR 1478581 (99g:92014)
 4.
 T. Burton, A fixedpoint theorem of Krasnosel'skii, Appl. Math. Lett., 11 (1998), 8588. MR 1490385 (98i:47053)
 5.
 C. S. Barroso, E.V. Teixeira, A topological and geometric approach to fixed points results for sum of operators and applications, Nonlinear Anal. 60 (2005), 625650. MR 2109150 (2005i:47087)
 6.
 S. N. Chow, Existence of periodic solutions of autonomous functional differential equations, J. Diff. Eqns. 15 (1974), 350378. MR 0336003 (49:779)
 7.
 B. C. Dhage, Remarks on two fixedpoint theorems involving the sum and the product of two operators, Comput. Math. Appl. 46 (2003), 17791785. MR 2018766 (2004i:47104)
 8.
 D. Henry, Geometric Theory of Semilinear Parabolic Equations, SpringerVerlag, BerlinNew York, 1981. MR 610244 (83j:35084)
 9.
 M. A. Krasnosel'skii, Two remarks on the method of successive approximations, Uspehi Mat. Nauk 10 (1955), 123127. MR 0068119 (16:833a)
 10.
 Y. K. Li, Y. Kuang, Periodic solutions of periodic delay LotkaVolterra equations and systems, J. Math. Anal. Appl. 255 (2001), 260280. MR 1813821 (2001k:34133)
 11.
 Y. C. Liu and Z. X. Li, Krasnoselskii type fixed point theorems and applications, Proc. Amer. Math. Soc. 136 (2008), 12131220. MR 2367095 (2008k:47113)
 12.
 E. A. Ok, Fixed set theorems of Krasnoselskii type, Proc. Amer. Math. Soc. 137 (2009), 511518. MR 2448571 (2009f:47099)
 13.
 J. W. H. So, J. Wu, X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol. 43 (2001), 3751. MR 1854000 (2003b:92023)
 14.
 S. Park, Generalizations of the Krasnoselskii fixed point theorem, Nonlinear Anal. 67 (2007), 34013410. MR 2350896 (2009a:47111)
 15.
 J. Wu, Theory and Application of Partial Functional Differential Equations, SpringerVerlag, BerlinNew York, 1996. MR 1415838 (98a:35135)
 16.
 T. Xiang and R. Yuan, A class of expansivetype Krasnoselskii fixed point theorem, Nonlinear Anal. 71 (2009), 32293239. MR 2532845
 17.
 E. Zeidler, Nonlinear Functional Analysis and its Applications, I: Fixed Point Theorems, SpringerVerlag, New York, 1986. MR 816732 (87f:47083)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
47H08,
47H10,
37C25
Retrieve articles in all journals
with MSC (2010):
47H08,
47H10,
37C25
Additional Information
Tian Xiang
Affiliation:
Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences, Beijing Normal University, Ministry of Education, Beijing 100875, People’s Republic of China
Email:
tianx@mail.bnu.edu.cn
Rong Yuan
Affiliation:
Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences, Beijing Normal University, Ministry of Education, Beijing 100875, People’s Republic of China
Email:
ryuan@bnu.edu.cn
DOI:
http://dx.doi.org/10.1090/S000299392010105178
Keywords:
Fixed point,
noncompact mapping,
multivalued mapping
Received by editor(s):
March 14, 2009
Received by editor(s) in revised form:
March 29, 2010
Published electronically:
August 2, 2010
Additional Notes:
This work was supported by National Natural Science Foundation of China
Communicated by:
Yingfei Yi
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
