Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nondegeneracy of the second bifurcating branches for the Chafee-Infante problem on a planar symmetric domain

Author: Yasuhito Miyamoto
Journal: Proc. Amer. Math. Soc. 139 (2011), 975-984
MSC (2010): Primary 35B32, 35P15; Secondary 35J61, 35J15
Published electronically: July 30, 2010
MathSciNet review: 2745649
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Omega$ be a planar domain such that $ \Omega$ is symmetric with respect to both the $ x$- and $ y$-axes and $ \Omega$ satisfies certain conditions. Then the second eigenvalue of the Dirichlet Laplacian on $ \Omega$, $ \nu_2(\Omega)$, is simple, and the corresponding eigenfunction is odd with respect to the $ y$-axis. Let $ f\in C^3$ be a function such that

$\displaystyle f'(0)>0, f'''(0)<0, f(-u)=-f(u) \textrm{and}\ \frac{d}{du}\left(\frac{f(u)}{u}\right)<0 \textrm{for} u>0. $

Let $ \mathcal{C}$ denote the maximal continua consisting of nontrivial solutions, $ \{(\lambda,u)\}$, to

$\displaystyle \Delta u+\lambda f(u)=0 \ \textrm{in} \ \Omega,\qquad u=0 \ \textrm{on} \ \partial\Omega $

and emanating from the second eigenvalue $ (\nu_2(\Omega)/f'(0),0)$. We show that, for each $ (\lambda,u)\in\mathcal{C}$, the Morse index of $ u$ is one and zero is not an eigenvalue of the linearized problem. We show that $ \mathcal{C}$ consists of two unbounded curves, each curve is parametrized by $ \lambda$ and the closure $ \overline{\mathcal{C}}$ is homeomorphic to $ \mathbb{R}$.

References [Enhancements On Off] (What's this?)

  • 1. T. Carleman, Sur les systèmes linéaires aux derivées partielles du premier ordre à deux variables, C. R. Acad. Sci. Paris 197 (1933), 471-474.
  • 2. N. Chafee and E. Infante, A bifurcation problem for a nonlinear partial differential equation of parabolic type, Applicable Anal. 4 (1974/75), 17-37. MR 0440205 (55:13084)
  • 3. M. Crandall and P. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR 0288640 (44:5836)
  • 4. M. del Pino, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc. 131 (2003), 3499-3505. MR 1991761 (2004c:35027)
  • 5. B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. MR 544879 (80h:35043)
  • 6. M. Holzmann and H. Kielhöfer, Uniqueness of global positive solution branches of nonlinear elliptic problems, Math. Ann. 300 (1994), 221-241. MR 1299061 (95m:35068)
  • 7. P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. MR 0058082 (15:318b)
  • 8. P. Korman, Solution curves for semilinear equations on a ball, Proc. Amer. Math. Soc. 125 (1997), 1997-2005. MR 1423311 (97j:35037)
  • 9. Y. Miyamoto, Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk, J. Funct. Anal. 256 (2009), 747-776. MR 2484935 (2010d:35130)
  • 10. Y. Miyamoto, Non-existence of a secondary bifurcation point for a semilinear elliptic problem in the presence of symmetry, J. Math. Anal. Appl. 357 (2009), 89-97. MR 2526808 (2010d:35131)
  • 11. Y. Miyamoto, Global branches of sign-changing solutions to a semilinear Dirichlet problem in a disk, preprint.
  • 12. Y. Mukai, Bifurcation of solutions to a boundary value problem of a semilinear elliptic equation on a disk (in Japanese), Master Thesis (1997), Graduate School of Mathematical Sciences, University of Tokyo, Japan.
  • 13. R. Pütter, On the nodal lines of second eigenfunctions of the fixed membrane problem, Comment. Math. Helv. 65 (1990), 96-103. MR 1036131 (91c:35109)
  • 14. C. Shen, Remarks on the second eigenvalue of a symmetric simply connected plane region, SIAM J. Math. Anal. 19 (1988), 167-171. MR 924553 (89a:35152)
  • 15. J. Vegas, Bifurcations caused by perturbing the domain in an elliptic equation, J. Differential Equations 48 (1983), 189-226. MR 696867 (84g:35020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B32, 35P15, 35J61, 35J15

Retrieve articles in all journals with MSC (2010): 35B32, 35P15, 35J61, 35J15

Additional Information

Yasuhito Miyamoto
Affiliation: Department of Mathematics, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan

Keywords: Global branch, bifurcation, sign-changing solution, planar symmetric domain, second eigenvalue
Received by editor(s): March 23, 2010
Published electronically: July 30, 2010
Additional Notes: This work was partially supported by Grant-in-Aid for Young Scientists (B) (Subject No. 21740116).
Communicated by: Matthew J. Gursky
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society