Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Flag varieties as equivariant compactifications of $ \mathbb{G}_{a}^{n}$


Author: Ivan V. Arzhantsev
Journal: Proc. Amer. Math. Soc. 139 (2011), 783-786
MSC (2010): Primary 14M15; Secondary 14L30
DOI: https://doi.org/10.1090/S0002-9939-2010-10723-2
Published electronically: October 22, 2010
MathSciNet review: 2745631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a semisimple affine algebraic group and $ P$ a parabolic subgroup of $ G$. We classify all flag varieties $ G/P$ which admit an action of the commutative unipotent group $ \mathbb{G}_{a}^{n}$ with an open orbit.


References [Enhancements On Off] (What's this?)

  • [1] I. V. Arzhantsev and E. V. Sharoyko, Hassett-Tschinkel correspondence: modality and projective hypersurfaces, arXiv:0912.1474 [math.AG].
  • [2] N. Bourbaki, Groupes et algèbres de Lie, Chaps. 4, 5 and 6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [3] M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), 179-186. MR 0435092 (55:8054)
  • [4] B. Hassett and Yu. Tschinkel, Geometry of equivariant compactifications of $ \mathbb{G}_{a}^{n}$, Int. Math. Res. Notices 22 (1999), 1211-1230. MR 1731473 (2000j:14073)
  • [5] V. Lakshmibai and K. N. Raghavan, Standard Monomial Theory, Encyclopaedia of Mathematical Sciences, vol. 137, Springer, 2008. MR 2388163 (2008m:14095)
  • [6] A. L. Onishchik, On compact Lie groups transitive on certain manifolds, Sov. Math. Dokl. 1 (1961), 1288-1291. MR 0150238 (27:239)
  • [7] A. L. Onishchik, Inclusion relations between transitive compact transformation groups, Tr. Mosk. Mat. O.-va (Russian) 11 (1962), 199-242. MR 0153779 (27:3740)
  • [8] A. L. Onishchik, Topology of transitive transformation groups, Johann Ambrosius Barth., Leipzig, 1994. MR 1266842 (95e:57058)
  • [9] R. Richardson, G. Röhrle and R. Steinberg, Parabolic subgroups with abelian unipotent radical, Invent. Math. 110 (1992), 649-671. MR 1189494 (93j:20092)
  • [10] E. V. Sharoiko, Hassett-Tschinkel correspondence and automorphisms of a quadric, Sbornik: Math. 200 (2009), 1715-1729. MR 2590000
  • [11] D. A. Suprunenko and R. I. Tyshkevich, Commutative matrices, Academic Press, New York, 1969. MR 0201472 (34:1356)
  • [12] J. Tits, Espaces homogènes complexes compacts, Comm. Math. Helv. 37 (1962), 111-120. MR 0154299 (27:4248)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14M15, 14L30

Retrieve articles in all journals with MSC (2010): 14M15, 14L30


Additional Information

Ivan V. Arzhantsev
Affiliation: Department of Higher Algebra, Faculty of Mechanics and Mathematics, Moscow State University, Leninskie Gory 1, GSP-1, Moscow, 119991, Russia
Email: arjantse@mccme.ru

DOI: https://doi.org/10.1090/S0002-9939-2010-10723-2
Keywords: Semisimple groups, parabolic subgroups, flag varieties, automorphisms
Received by editor(s): March 14, 2010
Published electronically: October 22, 2010
Additional Notes: The author was supported by RFBR Grants 09-01-00648-a, 09-01-90416-Ukr-f-a, and the Deligne 2004 Balzan Prize in Mathematics.
Communicated by: Harm Derksen
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society