Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

There is no tame automorphism of $ \mathbb{C}^{3}$ with multidegree $ (3,4,5)$


Author: Marek Karaś
Journal: Proc. Amer. Math. Soc. 139 (2011), 769-775
MSC (2010): Primary 14Rxx, 14R10
DOI: https://doi.org/10.1090/S0002-9939-2010-10779-7
Published electronically: November 10, 2010
MathSciNet review: 2745629
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F=(F_{1},\ldots ,F_{n}):\mathbb{C}^{n}\rightarrow \mathbb{C}^{n}$ be any polynomial mapping. The multidegree of $ F$, denoted $ \textrm{mdeg} F,$ is the sequence of positive integers $ (\deg F_{1},\ldots ,\deg F_{n}).$ In this paper we address the following problem: for which sequence $ (d_{1},\ldots ,d_{n})$ is there an automorphism or a tame automorphism $ F:\mathbb{C}^{n}\rightarrow \mathbb{C}^{n}$ with $ \mdeg F=(d_{1},\ldots ,d_{n})$? We prove, among other things, that there is no tame automorphism $ F:\mathbb{C}^{3}\rightarrow \mathbb{C}^{3}$ with $ \textrm{mdeg} F=(3,4,5)$.


References [Enhancements On Off] (What's this?)

  • 1. H.W.E. Jung, Uber ganze birationale Transformationen der Ebene, J. reine angew. Math. 184 (1942), 161-174. MR 0008915 (5:74f)
  • 2. W. van der Kulk, On polynomial rings in two variables, Nieuw Archief voor Wiskunde (3) 1 (1953), 33-41. MR 0054574 (14:941f)
  • 3. I.P. Shestakov, U.U. Umirbaev, The Nagata automorphism is wild, Proc. Natl. Acad. Sci. USA 100 (2003), 12561-12563. MR 2017754 (2004j:13036)
  • 4. I.P. Shestakov, U.U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197-227. MR 2015334 (2004h:13022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14Rxx, 14R10

Retrieve articles in all journals with MSC (2010): 14Rxx, 14R10


Additional Information

Marek Karaś
Affiliation: Instytut Matematyki, Uniwersytetu Jagiellońskiego, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Email: Marek.Karas@im.uj.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-2010-10779-7
Keywords: Polynomial automorphism, tame automorphism, multidegree.
Received by editor(s): February 24, 2009
Published electronically: November 10, 2010
Communicated by: Ted Chinburg
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society