Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The Andrews-Stanley partition function and $ p(n)$: congruences

Author: Holly Swisher
Journal: Proc. Amer. Math. Soc. 139 (2011), 1175-1185
MSC (2010): Primary 11P82, 11P83
Published electronically: August 24, 2010
MathSciNet review: 2748412
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: R. Stanley formulated a partition function $ t(n)$ which counts the number of partitions $ \pi$ for which the number of odd parts of $ \pi$ is congruent to the number of odd parts in the conjugate partition $ \pi'$ $ \pmod{4}$. In light of G. E. Andrews' work on this subject, it is natural to ask for relationships between $ t(n)$ and the usual partition function $ p(n)$. In particular, Andrews showed that the $ \pmod{5}$ Ramanujan congruence for $ p(n)$ also holds for $ t(n)$. In this paper we extend his observation by showing that there are infinitely many arithmetic progressions $ An + B$ such that for all $ n\geq 0$,

$\displaystyle t(An+B) \equiv p(An+B) \equiv 0 \pmod{l^j} $

whenever $ l\geq 5$ is prime and $ j\geq 1$.

References [Enhancements On Off] (What's this?)

  • [Ahl00] Scott Ahlgren.
    Distribution of the partition function modulo composite integers $ M$.
    Math. Ann., 318(4):795-803, 2000. MR 1802511 (2001j:11099)
  • [AO01] Scott Ahlgren and Ken Ono.
    Congruence properties for the partition function.
    Proc. Natl. Acad. Sci. USA, 98(23):12882-12884 (electronic), 2001. MR 1862931 (2002k:11187)
  • [And98] George E. Andrews.
    The theory of partitions.
    Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998.
    Reprint of the 1976 original. MR 1634067 (99c:11126)
  • [And04] George E. Andrews.
    On a partition function of Richard Stanley.
    Electronic J. Combin., 11(2), 2004. MR 2120096
  • [BG06] Alexander Berkovich and Frank G. Garvan.
    On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations.
    Trans. Amer. Math. Soc., 358(2):703-726 (electronic), 2006. MR 2177037 (2006g:11212)
  • [Bou06] Cilanne E. Boulet.
    A four-parameter partition identity.
    Ramanujan J., 12(3):315-320, 2006. MR 2293792 (2007m:05021)
  • [GKS90] Frank Garvan, Dongsu Kim, and Dennis Stanton.
    Cranks and $ t$-cores.
    Invent. Math., 101(1):1-17, 1990. MR 1055707 (91h:11106)
  • [Kob93] Neal Koblitz.
    Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, second edition, 1993. MR 1216136 (94a:11078)
  • [Mar96] Yves Martin.
    Multiplicative $ \eta$-quotients.
    Trans. Amer. Math. Soc., 348(12):4825-4856, 1996. MR 1376550 (97d:11070)
  • [Ono00] Ken Ono.
    Distribution of the partition function modulo $ m$.
    Ann. of Math. (2), 151(1):293-307, 2000. MR 1745012 (2000k:11115)
  • [Ono04] Ken Ono.
    The web of modularity: arithmetic of the coefficients of modular forms and $ q$-series, volume 102 of CBMS Regional Conference Series in Mathematics.
    Published for the Conference Board of the Mathematical Sciences, Washington, DC, by Amer. Math. Soc., Providence, RI, 2004. MR 2020489 (2005c:11053)
  • [Ser76] Jean-Pierre Serre.
    Divisibilité de certaines fonctions arithmétiques.
    Enseignement Math. (2), 22(3-4):227-260, 1976. MR 0434996 (55:7958)
  • [Shi73] Goro Shimura.
    On modular forms of half integral weight.
    Ann. of Math. (2), 97:440-481, 1973. MR 0332663 (48:10989)
  • [Sil04] Andrew V. Sills.
    A combinatorial proof of a partition identity of Andrews and Stanley.
    Int. J. Math. Math. Sci., 45-48:2495-2501, 2004. MR 2102868 (2005h:05014)
  • [Sta02] R. P. Stanley.
    Problem 10969.
    Amer. Math. Monthly, 109:760, 2002.
  • [Sta05] Richard P. Stanley.
    Some remarks on sign-balanced and maj-balanced posets.
    Adv. in Appl. Math., 34(4):880-902, 2005. MR 2129003 (2006g:06004)
  • [Tre06] Stephanie Treneer.
    Congruences for the coefficients of weakly holomorphic modular forms.
    Proc. London Math. Soc. (3), 93(2):304-324, 2006. MR 2251155 (2007c:11058)
  • [Yee04] Ae Ja Yee.
    On partition functions of Andrews and Stanley.
    J. Combin. Theory Ser. A, 107(2):313-321, 2004. MR 2078889 (2005d:05022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11P82, 11P83

Retrieve articles in all journals with MSC (2010): 11P82, 11P83

Additional Information

Holly Swisher
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97301

Received by editor(s): April 16, 2010
Published electronically: August 24, 2010
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society