On the restriction of the Hermitian Eisenstein series and its applications
Authors:
Shoyu Nagaoka and Yoshitugu Nakamura
Journal:
Proc. Amer. Math. Soc. 139 (2011), 1291-1298
MSC (2010):
Primary 11F55; Secondary 11F46
DOI:
https://doi.org/10.1090/S0002-9939-2010-10562-2
Published electronically:
September 2, 2010
MathSciNet review:
2748422
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce a simple construction of a Siegel cusp form obtained by taking the difference between the Siegel Eisenstein series and the restricted Hermitian Eisenstein series. In addition, we present applications of the Siegel cusp form.
- 1.
H. Cohen, Sums involving the values at negative integers of
-functions of quadratic characters. Math. Ann. 217 (1975), 271-285. MR 0382192 (52:3080)
- 2. T. Dern, Hermitesche Modulformen zweiten Grades. Verlag Mainz, Aachen, 2001.
- 3.
T. Dern, A. Krieg, Graded rings of Hermitian modular forms of degree
, Manuscripta Math. 110 (2003), 251-256. MR 1962537 (2004b:11059)
- 4. M. Eichler, D. Zagier, The Theory of Jacobi Forms. Birkhäuser, Boston, Basel, Stuttgart, 1985. MR 781735 (86j:11043)
- 5. J.-I. Igusa, Siegel modular forms of genus two. Amer. J. Math. 84 (1962), 175-200. MR 0141643 (25:5040)
- 6.
J.-I. Igusa, On the ring of modular forms of degree two over
. Amer. J. Math. 101 (1979), 149-183. MR 527830 (80d:10039)
- 7.
G. Kaufhold, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion
. Grades. Math. Ann. 137 (1959), 454-476. MR 0121485 (22:12223)
- 8.
T. Kikuta, S. Nagaoka, On a correspondence between
-adic Siegel-Eisenstein series and genus theta series. Acta Arithmetica 134 (2008), 111-126. MR 2429640 (2009e:11083)
- 9.
A. Krieg, The Maass space on the Hermitian half-space of degree
. Math. Ann. 289 (1991), 663-681. MR 1103042 (93d:11051)
- 10. H. Maass, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Dan. Vid. Selsk. 34 (1964), 1-25. MR 0171758 (30:1985)
- 11.
S. Nagaoka, On
-adic Hermitian Eisenstein series. Proc. Amer. Math. Soc. 134 (2006), 2533-2540. MR 2213730 (2007h:11054)
- 12. L. C. Washington, Introduction to Cyclotomic Fields. Springer Verlag, New York, Heidelberg, Berlin, 1982. MR 718674 (85g:11001)
- 13. H. Yoshida, Siegel's modular forms and the arithmetic of quadratic forms. Invent. Math. 60 (1980), 193-248. MR 586427 (81m:10051)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F55, 11F46
Retrieve articles in all journals with MSC (2010): 11F55, 11F46
Additional Information
Shoyu Nagaoka
Affiliation:
Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email:
nagaoka@math.kindai.ac.jp
Yoshitugu Nakamura
Affiliation:
Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
Email:
yoshi-nakamura@math.kindai.ac.jp
DOI:
https://doi.org/10.1090/S0002-9939-2010-10562-2
Keywords:
Siegel modular forms,
Hermitian modular forms.
Received by editor(s):
December 22, 2009
Received by editor(s) in revised form:
April 16, 2010, and April 28, 2010
Published electronically:
September 2, 2010
Communicated by:
Wen-Ching Winnie Li
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.