Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Congruences for newforms and the index of the Hecke algebra


Authors: Scott Ahlgren and Jeremy Rouse
Journal: Proc. Amer. Math. Soc. 139 (2011), 1247-1261
MSC (2010): Primary 11F33; Secondary 11F30
DOI: https://doi.org/10.1090/S0002-9939-2010-10661-5
Published electronically: October 1, 2010
MathSciNet review: 2748418
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study congruences between newforms in the spaces $ S_4(\Gamma_0(p), \overline{\mathbb{Z}}_p)$ for primes $ p$. Under a suitable hypothesis (which is true for all $ p<5000$ with the exception of $ 139$ and $ 389$) we provide a complete description of the congruences between these forms, which leads to a formula (conjectured by Calegari and Stein) for the index of the Hecke algebra $ \mathbb{T}_{\mathbb{Z}_p}$ in its normalization. Since the hypothesis is amenable to computation, we are able to verify the conjectured formula for $ p<5000$. In 2004 Calegari and Stein gave a number of conjectures which provide an outline for the proof of this formula, and the results here clarify the dependencies between the various conjectures. Finally, we discuss similar results for the spaces $ S_6(\Gamma_0(p), \overline{\mathbb{Z}}_p)$.


References [Enhancements On Off] (What's this?)

  • 1. Ahmed Abbes and Emmanuel Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), no. 3, 269-286. MR 1414591 (97f:11038)
  • 2. Scott Ahlgren and Mugurel Barcau, Congruences for modular forms of weights two and four, J. Number Theory 126 (2007), no. 2, 193-199. MR 2354927 (2008k:11050)
  • 3. Scott Ahlgren and Matthew Papanikolas, Higher Weierstrass points on $ X_0(p)$, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1521-1535. MR 1946403 (2003j:11065)
  • 4. M. Barcau and V. Pacşol, Mod $ p$ congruences for modular forms of weight two and four for $ \Gamma_0(pN)$, International Journal of Number Theory, to appear.
  • 5. Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993). MR 1484478
  • 6. Frank Calegari and William A. Stein, Conjectures about discriminants of Hecke algebras of prime level, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 140-152. MR 2137350 (2006c:11049)
  • 7. Alina Carmen Cojocaru and Ernst Kani, The modular degree and the congruence number of a weight $ 2$ cusp form, Acta Arith. 114 (2004), no. 2, 159-167. MR 2068855 (2005e:11053)
  • 8. Henri Darmon, Fred Diamond, and Richard Taylor, Fermat's last theorem, Elliptic curves, modular forms & Fermat's last theorem (Hong Kong, 1993), Int. Press, Cambridge, MA, 1997, pp. 2-140. MR 1605752 (99d:11067b)
  • 9. Fred Diamond and John Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994), CMS Conf. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 1995, pp. 39-133. MR 1357209 (97g:11044)
  • 10. Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432 (2008m:13013)
  • 11. Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, translated from the Japanese by M. Reid. MR 1011461 (90i:13001)
  • 12. Loïc Merel and William A. Stein, The field generated by the points of small prime order on an elliptic curve, Internat. Math. Res. Notices (2001), no. 20, 1075-1082. MR 1857596 (2003d:11082)
  • 13. Marusia Rebolledo Hochart, Corps engendré par les points de $ 13$-torsion des courbes elliptiques, Acta Arith. 109 (2003), no. 3, 219-230. MR 1980258 (2004c:11089)
  • 14. Jean-Pierre Serre, Valeurs propres des opérateurs de Hecke modulo $ l$, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Soc. Math. France, Paris, 1975, pp. 109-117. Astérisque, Nos. 24-25. MR 0382173 (52:3061)
  • 15. H. P. F. Swinnerton-Dyer, On $ l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, pp. 1-55. Lecture Notes in Math., Vol. 350. MR 0406931 (53:10717a)
  • 16. Mark Watkins, Computing the modular degree of an elliptic curve, Experiment. Math. 11 (2002), no. 4, 487-502 (2003). MR 1969641 (2004c:11091)
  • 17. D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), no. 3, 372-384. MR 790959 (86m:11041)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F33, 11F30

Retrieve articles in all journals with MSC (2010): 11F33, 11F30


Additional Information

Scott Ahlgren
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Email: ahlgren@math.uiuc.edu

Jeremy Rouse
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Address at time of publication: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
Email: rouseja@wfu.edu

DOI: https://doi.org/10.1090/S0002-9939-2010-10661-5
Received by editor(s): April 20, 2010
Published electronically: October 1, 2010
Additional Notes: The second author was supported by NSF grant DMS-0901090
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society