Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An application of ample vector bundles in real algebraic geometry


Authors: Wojciech Kucharz and Kamil Rusek
Journal: Proc. Amer. Math. Soc. 139 (2011), 1155-1161
MSC (2010): Primary 14F05, 14F25, 14P05, 14P25
DOI: https://doi.org/10.1090/S0002-9939-2010-10765-7
Published electronically: November 17, 2010
MathSciNet review: 2748410
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be an algebraic vector bundle on a compact nonsingular real algebraic set $ X$, and let $ Z$ be the zero locus of a ``generic'' algebraic section of $ E$. We investigate how certain cohomological invariants of $ X$ and $ Z$ are related. A crucial role in the proof is played by ample vector bundles on a suitable complexification of $ X$.


References [Enhancements On Off] (What's this?)

  • 1. R. Abraham and J. Robbin, Transversal Mappings and Flows, New York, Benjamin, 1967. MR 0240836 (39:2181)
  • 2. S. Akbulut and H. King, Submanifolds and homology of nonsingular algebraic varieties, Amer. J. Math., 107 (1985), 45-83. MR 778089 (86m:14017)
  • 3. S. Akbulut and H. King, Topology of Real Algebraic Sets, Math. Sci. Research Institute Publ. 25, Springer, 1992. MR 1225577 (94m:57001)
  • 4. R. Benedetti and A. Tognoli, Approximation theorems in real algebraic geometry, Boll. Unione Mat. Ital., Suppl., 2 (1980), 209-228. MR 675502 (84h:58004)
  • 5. R. Benedetti and A. Tognoli, Remarks and counterexamples in the theory of real vector bundles and cycles. In: Géométrie algébrique réelle et formes quadratiques, Lecture Notes in Math. 959, Springer, 1982, 198-211. MR 683134 (85a:14018)
  • 6. J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergeb. der Math und ihrer Grenzgeb. Folge 3, Vol. 36, Berlin-Heidelberg-New York, Springer, 1998. MR 1659509 (2000a:14067)
  • 7. J. Bochnak and W. Kucharz, Algebraic models of smooth manifolds, Invent. Math., 97 (1989), 585-611. MR 1005007 (91b:14076)
  • 8. J. Bochnak and W. Kucharz, Complete intersections in differential topology and algebraic geometry, Boll. Unione Mat. Ital. (7), 10-B (1996), 1019-1041. MR 1430164 (98b:57045)
  • 9. J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, Banach Center Publications, Vol. 44, 21-35, Warsaw, 1998. MR 1677394 (2000b:14080)
  • 10. A. Borel and A. Haefliger, La classe d'homologie fondamentale d'un espace analytique, Bull. Soc. Math. France 89 (1961), 461-513. MR 0149503 (26:6990)
  • 11. S. Dolega, Complexification and cohomology in real algebraic geometry, Ph.D. Thesis, University of New Mexico, 2004.
  • 12. R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., Vol. 33, New York-Heidelberg-Berlin, Springer, 1977. MR 0463157 (57:3116)
  • 13. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., 79 (1964), 109-326. MR 0199184 (33:7333)
  • 14. D. Husemoller, Fibre Bundles, New York, Springer, 1994. MR 1249482 (94k:55001)
  • 15. W. Kucharz, Homology classes of real algebraic sets, Ann. Inst. Fourier (Grenoble), 58 (2008), 989-1022. MR 2427517 (2009f:14118)
  • 16. W. Kucharz, Cycles on algebraic models of smooth manifolds, J. Eur. Math. Soc., 11 (2009), 393-405. MR 2486938 (2010h:14094)
  • 17. W. Kucharz and K. Kurdyka, Complexification of algebraic models of smooth manifolds, to appear in J. London Math. Soc.
  • 18. W. Kucharz and J. van Hamel, Transcendental manifolds in projective space and Stiefel-Whitney classes, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), 267-277. MR 2548247 (2010g:14082)
  • 19. R. Lazarsfeld, Positivity in Algebraic Geometry. I, Ergeb. der Math. und ihrer Grenzgeb. Folge 3, Vol. 48, Berlin-Heidelberg, Springer, 2004. MR 2095471 (2005k:14001a)
  • 20. F. Mangolte, Cycles algébriques et topologie des surfaces bielliptiques réelles, Comment. Math. Helv., 78 (2003), 385-393. MR 1988202 (2005b:14020)
  • 21. J. Nash, Real algebraic manifolds, Ann. of Math. (2), 56 (1952), 405-421. MR 0050928 (14:403b)
  • 22. Y. Ozan, On homology of real algebraic varieties, Proc. Amer. Math. Soc., 129 (2001), 3167-3175. MR 1844989 (2002m:14048)
  • 23. Y. Ozan, Relative topology of real algebraic varieties in their complexifications, Pacific J. Math, 217 (2004), 291-302. MR 2109937 (2005i:57036)
  • 24. R. Silhol, Real Algebraic Surfaces, Lecture Notes in Math. 1392, Springer, 1989. MR 1015720 (91i:14045)
  • 25. A. Sommese, Submanifolds of Abelian varieties, Math. Ann., 233 (1978), 229-256. MR 0466647 (57:6524)
  • 26. A. Tognoli, Su una cognettura di Nash, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat. (3), 27 (1973), 167-185. MR 0396571 (53:434)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14F05, 14F25, 14P05, 14P25

Retrieve articles in all journals with MSC (2010): 14F05, 14F25, 14P05, 14P25


Additional Information

Wojciech Kucharz
Affiliation: Institute of Mathematics, Jagiellonian University, ul. Profesora Łojasiewicza 6, 30-348 Kraków, Poland
Email: Wojciech.Kucharz@im.uj.edu.pl

Kamil Rusek
Affiliation: Institute of Mathematics, Jagiellonian University, ul. Profesora Łojasiewicza 6, 30-348 Kraków, Poland
Email: Kamil.Rusek@im.uj.edu.pl

DOI: https://doi.org/10.1090/S0002-9939-2010-10765-7
Keywords: Real algebraic set, algebraic vector bundle, algebraic cohomology class, nonsingular projective complexification, ample vector bundle
Received by editor(s): February 5, 2010
Published electronically: November 17, 2010
Communicated by: Lev Borisov
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society