Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Difference between Galois representations in automorphism and outer-automorphism groups of a fundamental group


Author: Makoto Matsumoto
Journal: Proc. Amer. Math. Soc. 139 (2011), 1215-1220
MSC (2010): Primary 11R32; Secondary 14H30, 14H10, 20J05
DOI: https://doi.org/10.1090/S0002-9939-2010-10846-8
Published electronically: December 1, 2010
MathSciNet review: 2748415
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be a proper smooth geometrically connected curve over a number field of $ K$ of genus $ g\geq 3$. For a fixed $ \ell$, let $ \Pi^{\ell}$ denote the pro-$ \ell$ completion of the geometric fundamental group of $ C$. For an $ L$-rational point $ x$ of $ C$, we have $ \rho_{A,x}:G_L \to \operatorname{Aut} \Pi^\ell$ associated to the base point $ x$, and its quotient by the inner automorphism group $ \rho_O:G_L \to \operatorname{Out} \pi^\ell:=\operatorname{Aut}/\operatorname{Inn}$, which is independent of the choice of $ x$. We consider whether the equality $ \operatorname{Ker} \rho_{A,x}=\operatorname{Ker} \rho_{O,x}$ holds or not. Deligne and Ihara showed the equality when the curve is the projective line minus three points with a choice of tangential basepoint. The result here is: Fix an $ \ell$ dividing $ 2g-2$. Then there are infinitely many curves of genus $ g$ such that for any $ L$-rational point $ x$ with $ [L:K]$ finite and coprime to $ \ell$, the index $ [\operatorname{Ker} \rho_{O,x}:\operatorname{Ker} \rho_{A,x}]$ is infinite.


References [Enhancements On Off] (What's this?)

  • 1. M. Anderson: Exactness properties of profinite completion functors, Topology 13 (1974), 229-239. MR 0354882 (50:7359)
  • 2. P. Deligne: Le groupe fondamental de la droite projective moins trois points, in Galois groups over $ \mathbb{Q}$ (Berkeley, CA, 1987), 79-297, Math. Sci. Res. Inst. Publ., 16, Springer, New York-Berlin, 1989. MR 1012168 (90m:14016)
  • 3. A. Grothendieck: Revêtement Étales et Groupe Fondamental (SGA 1), Lecture Notes in Math., 224, Springer-Verlag, 1971. MR 0354651 (50:7129)
  • 4. R. Hain and D. Reed: Geometric proofs of some results of Morita, J. Algebraic Geom. 10 (2001), 199-217. MR 1811554 (2001m:14041)
  • 5. Y. Ihara: Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. (2) 123 (1986), 43-106. MR 825839 (87c:11055)
  • 6. Y. Ihara: Braids, Galois groups and some arithmetic functions, Proc. Int. Congress of Math., Kyoto, 1990, Springer-Verlag, Tokyo (1991) vol. 1, 99-120. MR 1159208 (95c:11073)
  • 7. J. Labute: On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16-23. MR 0251111 (40:4342)
  • 8. M. Matsumoto and A. Tamagawa: Mapping-class-group action versus Galois action on profinite fundamental groups, American Journal of Mathematics 122 (2000), 1017-1026. MR 1781929 (2002a:14022)
  • 9. S. Morita: Families of Jacobian manifolds and characteristic classes of surface bundles, I, Ann. Inst. Fourier, Grenoble 39 (1989), 777-810. MR 1030850 (91d:32028)
  • 10. T. Oda, Etale homotopy type of the moduli spaces of algebraic curves, Geometric Galois actions, 1, 85-95, London Math. Soc. Lecture Note Ser., 242, Cambridge Univ. Press, Cambridge, 1997. MR 1483111 (2000a:14030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11R32, 14H30, 14H10, 20J05

Retrieve articles in all journals with MSC (2010): 11R32, 14H30, 14H10, 20J05


Additional Information

Makoto Matsumoto
Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Tokyo, 153-8914 Japan
Email: matumoto@ms.u-tokyo.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2010-10846-8
Received by editor(s): September 2, 2009
Received by editor(s) in revised form: April 19, 2010
Published electronically: December 1, 2010
Additional Notes: The author was supported in part by the Scientific Grants-in-Aid 16204002 and 19204002 and by the Core-to-Core grant 18005 from the Japan Society for the Promotion of Science. Part of this study was done while the author visited the Newton Institute in August 2009.
Dedicated: Dedicated to Professor Takayuki Oda on his 60th birthday
Communicated by: Ted Chinburg
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society