Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Benford's law for coefficients of modular forms and partition functions


Authors: Theresa C. Anderson, Larry Rolen and Ruth Stoehr
Journal: Proc. Amer. Math. Soc. 139 (2011), 1533-1541
MSC (2010): Primary 11F12, 11F20, 11P82
DOI: https://doi.org/10.1090/S0002-9939-2010-10577-4
Published electronically: October 5, 2010
MathSciNet review: 2763743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here we prove that Benford's law holds for coefficients of an infinite class of modular forms. Expanding the work of Bringmann and Ono on exact formulas for harmonic Maass forms, we derive the necessary asymptotics. This implies that the unrestricted partition function $ p(n)$, as well as other natural partition functions, satisfies Benford's law.


References [Enhancements On Off] (What's this?)

  • 1. F. Benford. The law of anomalous numbers. Proceedings of the American Philosophical Society, 1938, Vol. 78, No. 4, pages 551-572.
  • 2. K. Bringmann and K. Ono. An arithmetic formula for the partition function. Proceedings of the American Mathematical Society, 135 (2007), 3507-3514. MR 2336564 (2008m:11206)
  • 3. K. Bringmann and K. Ono. Coefficients of harmonic Maass forms. Proceedings of the 2008 University of Florida Conference on Partitions, $ q$-series and Modular Forms, in press.
  • 4. P. Diaconis. The distribution of leading digits and uniform distribution mod $ 1$. The Annals of Probability, 1977, Vol. 5, No. 1, pages 75-81. MR 0422186 (54:10178)
  • 5. G. H. Hardy and S. Ramanujan. Une formule asymptotique pour le nombre des partitions de n [Comptes Rendus, 2 Jan. 1917] (French) [An asymptotic formula for the number of partitions of $ n$], Collected Papers of Srinivas Ramanujan, pages 239-241, AMS Chelsea Publ., Providence, RI, 2000. MR 2280874
  • 6. T. Hill. The first-digit phenomenon, American Scientists 86 (1996), 358-363.
  • 7. T. Hill. A statistical derivation of the significant-digit law, Statistical Science 10 (1996), 354-363. MR 1421567 (98a:60021)
  • 8. A. Kontorovich and S. Miller. Benford's Law, Values of L-functions, and the $ 3x+1$ problem, Acta Arithmetica, 120 (2005), no. 3, pages 952-992. MR 2188844 (2007c:11085)
  • 9. L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. Dover Publications, 2006. MR 0419394 (54:7415)
  • 10. S. Newcomb. Note on the Frequency of Use of Different Digits in Natural Numbers. American Journal of Mathematics, Vol. 4, No. 1, 1881, pages 39-40. MR 1505286
  • 11. K. Ono. The Web of Modularity: Arithmetic of Coefficients of Modular Forms and $ q$-series. American Mathematical Society, 2004. MR 2020489 (2005c:11053)
  • 12. S. Robins, Generalized Dedekind $ \eta$-products, Contemp. Math., The Rademacher Legacy to Mathematics, 166, Amer. Math. Soc., 1994, 119-128. MR 1284055 (95k:11061)
  • 13. D. Zagier, Elliptic Modular Forms and Their Applications, The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway, Springer-Verlag, 2008. MR 2409678 (2010b:11047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F12, 11F20, 11P82

Retrieve articles in all journals with MSC (2010): 11F12, 11F20, 11P82


Additional Information

Theresa C. Anderson
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: tcanderson@math.brown.edu

Larry Rolen
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: lrolen@wisc.edu

Ruth Stoehr
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: rstoehr@emory.edu

DOI: https://doi.org/10.1090/S0002-9939-2010-10577-4
Received by editor(s): April 30, 2010
Received by editor(s) in revised form: May 5, 2010
Published electronically: October 5, 2010
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society