Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Binomial coefficients and the ring of $ p$-adic integers


Authors: Zhi-Wei Sun and Wei Zhang
Journal: Proc. Amer. Math. Soc. 139 (2011), 1569-1577
MSC (2010): Primary 11B65; Secondary 05A10, 11A07, 11S99
DOI: https://doi.org/10.1090/S0002-9939-2010-10587-7
Published electronically: October 28, 2010
MathSciNet review: 2763746
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k>1$ be an integer and let $ p$ be a prime. We show that if $ p^{a}\leqslant k<2p^{a}$ or $ k=p^{a}q+1$ (with $ q<p/2$) for some $ a=1,2,3,\ldots $, then the set $ \{\binom nk: n=0,1,2,\ldots \}$ is dense in the ring $ \mathbb{Z}_{p}$ of $ p$-adic integers; i.e., it contains a complete system of residues modulo any power of $ p$.


References [Enhancements On Off] (What's this?)

  • [BLSS] W. D. Banks, F. Luca, I. E. Shparlinski and H. Stichtenoth, On the value set of $ n!$ modulo a prime, Turk. J. Math. 29 (2005), 169-174. MR 2142292 (2006b:11119)
  • [CVZ] C. Cobeli, M. Vajaitu and A. Zaharescu, The sequence $ n! (\mathrm{mod} p)$, J. Ramanujan Math. Soc. 15 (2000), 135-154. MR 1754715 (2001g:11153)
  • [DW] K. Davis and W. Webb, A binomial coefficient congruence modulo prime powers, J. Number Theory 43 (1993), 20-23. MR 1200804 (93m:11016)
  • [GL] M. Z. Garaev and F. Luca, Character sums and products of factorials modulo $ p$, J. Théor. Nombres Bordeaux 17 (2005), 151-160. MR 2152216 (2006b:11102)
  • [GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994. MR 1397498 (97d:68003)
  • [Gr] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in: Organic Mathematics (Burnady, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997. MR 1483922 (99h:11016)
  • [Gu] R. K. Guy, Unsolved Problems in Number Theory, 2nd edition, Springer, New York, 1994. MR 1299330 (96e:11002)
  • [HS] H. Hu and Z. W. Sun, An extension of Lucas' theorem, Proc. Amer. Math. Soc. 129 (2001), 3471-3478. MR 1860478 (2002i:11019)
  • [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Graduate Texts in Math., 84), 2nd ed., Springer, New York, 1990. MR 1070716 (92e:11001)
  • [M] M. R. Murty, Introduction to $ p$-adic Analytic Number Theory (AMS/IP Studies in Adv. Math., vol. 27), Amer. Math. Soc., Providence, RI; Internat. Press, Somerville, MA, 2002. MR 1913413 (2003c:11151)
  • [S] Z. W. Sun, On sums of primes and triangular numbers, Journal of Combinatorics and Number Theory 1 (2009), 65-76.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11B65, 05A10, 11A07, 11S99

Retrieve articles in all journals with MSC (2010): 11B65, 05A10, 11A07, 11S99


Additional Information

Zhi-Wei Sun
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: zwsun@nju.edu.cn

Wei Zhang
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: zhangwei_07@yahoo.com.cn

DOI: https://doi.org/10.1090/S0002-9939-2010-10587-7
Received by editor(s): December 26, 2009
Received by editor(s) in revised form: May 15, 2010
Published electronically: October 28, 2010
Additional Notes: The first author is the corresponding author. He is supported by the National Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund (grant 10928101) of China
Communicated by: Wen-Ching Winnie Li
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society