The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions

Authors:
Rowan Killip and Monica Visan

Journal:
Proc. Amer. Math. Soc. **139** (2011), 1805-1817

MSC (2010):
Primary 35L71

Published electronically:
November 1, 2010

MathSciNet review:
2763767

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the defocusing nonlinear wave equation with spherically-symmetric initial data in the regime (which is energy-supercritical) and dimensions ; we also consider , but for a smaller range of . The principal result is that blowup (or failure to scatter) must be accompanied by blowup of the critical Sobolev norm. An equivalent formulation is that maximal-lifespan solutions with bounded critical Sobolev norm are global and scatter.

**1.**Hajer Bahouri and Patrick Gérard,*High frequency approximation of solutions to critical nonlinear wave equations*, Amer. J. Math.**121**(1999), no. 1, 131–175. MR**1705001****2.**J. Bourgain,*Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case*, J. Amer. Math. Soc.**12**(1999), no. 1, 145–171. MR**1626257**, 10.1090/S0894-0347-99-00283-0**3.**A. Bulut,*Maximizers for the Strichartz inequalities for the wave equation.*Preprint`arXiv:0905.1678`.**4.**A. Bulut,*Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation.*Preprint`arXiv:1006.4168`**5.**A. Bulut, M. Czubak, D. Li, N. Pavlovic, X. Zhang,*Stability and unconditional uniqueness of solutions for energy critical wave equations in high dimensions.*Preprint`arXiv:0911.4534`.**6.**J. Ginibre, A. Soffer, and G. Velo,*The global Cauchy problem for the critical nonlinear wave equation*, J. Funct. Anal.**110**(1992), no. 1, 96–130. MR**1190421**, 10.1016/0022-1236(92)90044-J**7.**Manoussos G. Grillakis,*Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity*, Ann. of Math. (2)**132**(1990), no. 3, 485–509. MR**1078267**, 10.2307/1971427**8.**Manoussos G. Grillakis,*Regularity for the wave equation with a critical nonlinearity*, Comm. Pure Appl. Math.**45**(1992), no. 6, 749–774. MR**1162370**, 10.1002/cpa.3160450604**9.**L. V. Kapitanskiĭ,*The Cauchy problem for the semilinear wave equation. I*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**163**(1987), no. Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsii 19, 76–104, 188 (Russian, with English summary); English transl., J. Soviet Math.**49**(1990), no. 5, 1166–1186. MR**918943**, 10.1007/BF02208713

L. V. Kapitanskiĭ,*The Cauchy problem for the semilinear wave equation. II*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**182**(1990), no. Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 21, 38–85, 171 (Russian, with English summary); English transl., J. Soviet Math.**62**(1992), no. 3, 2746–2777. MR**1064097**, 10.1007/BF01671000

L. V. Kapitanskiĭ,*The Cauchy problem for the semilinear wave equation. III*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**181**(1990), no. Differentsialnaya Geom. Gruppy Li i Mekh. 11, 24–64, 186 (Russian, with English summary); English transl., J. Soviet Math.**62**(1992), no. 2, 2619–2645. MR**1097579**, 10.1007/BF01102635**10.**Markus Keel and Terence Tao,*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), no. 5, 955–980. MR**1646048****11.**Carlos E. Kenig and Frank Merle,*Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case*, Invent. Math.**166**(2006), no. 3, 645–675. MR**2257393**, 10.1007/s00222-006-0011-4**12.**Carlos E. Kenig and Frank Merle,*Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation*, Acta Math.**201**(2008), no. 2, 147–212. MR**2461508**, 10.1007/s11511-008-0031-6**13.**C. E. Kenig and F. Merle,*Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications.*Preprint`arXiv:0810.4834`.**14.**Sahbi Keraani,*On the blow up phenomenon of the critical nonlinear Schrödinger equation*, J. Funct. Anal.**235**(2006), no. 1, 171–192. MR**2216444**, 10.1016/j.jfa.2005.10.005**15.**Rowan Killip and Monica Visan,*The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher*, Amer. J. Math.**132**(2010), no. 2, 361–424. MR**2654778**, 10.1353/ajm.0.0107**16.**R. Killip and M. Visan,*Nonlinear Schrödinger equations at critical regularity.*Lecture notes prepared for Clay Mathematics Institute Summer School, Zürich, Switzerland, 2008.**17.**R. Killip and M. Visan,*Energy-supercritical NLS: critical -bounds imply scattering.*Preprint`arXiv:0812.2084`. To appear in Comm. Partial Differential Equations.**18.**Rowan Killip, Monica Visan, and Xiaoyi Zhang,*Energy-critical NLS with quadratic potentials*, Comm. Partial Differential Equations**34**(2009), no. 10-12, 1531–1565. MR**2581982**, 10.1080/03605300903328109**19.**R. Killip and M. Visan,*The defocusing energy-supercritical nonlinear wave equation in three space dimensions.*Preprint http://arxiv.org/abs/1001.1761`arXiv:1001.1761`. To appear in Trans. Amer. Math. Soc.**20.**Cathleen S. Morawetz,*Notes on time decay and scattering for some hyperbolic problems*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. Regional Conference Series in Applied Mathematics, No. 19. MR**0492919****21.**Cathleen S. Morawetz and Walter A. Strauss,*Decay and scattering of solutions of a nonlinear relativistic wave equation*, Comm. Pure Appl. Math.**25**(1972), 1–31. MR**0303097****22.**Kenji Nakanishi,*Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power*, Internat. Math. Res. Notices**1**(1999), 31–60. MR**1666973**, 10.1155/S1073792899000021**23.**Hartmut Pecher,*Nonlinear small data scattering for the wave and Klein-Gordon equation*, Math. Z.**185**(1984), no. 2, 261–270. MR**731347**, 10.1007/BF01181697**24.**Jeffrey Rauch,*I. The 𝑢⁵ Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations*, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979) Res. Notes in Math., vol. 53, Pitman, Boston, Mass.-London, 1981, pp. 335–364. MR**631403****25.**Jalal Shatah and Michael Struwe,*Regularity results for nonlinear wave equations*, Ann. of Math. (2)**138**(1993), no. 3, 503–518. MR**1247991**, 10.2307/2946554**26.**Jalal Shatah and Michael Struwe,*Geometric wave equations*, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. MR**1674843****27.**Robert S. Strichartz,*Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations*, Duke Math. J.**44**(1977), no. 3, 705–714. MR**0512086****28.**Michael Struwe,*Globally regular solutions to the 𝑢⁵ Klein-Gordon equation*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**15**(1988), no. 3, 495–513 (1989). MR**1015805****29.**Terence Tao,*Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data*, New York J. Math.**11**(2005), 57–80. MR**2154347****30.**Terence Tao,*Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions*, Dyn. Partial Differ. Equ.**3**(2006), no. 2, 93–110. MR**2227039**, 10.4310/DPDE.2006.v3.n2.a1**31.**Michael E. Taylor,*Tools for PDE*, Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI, 2000. Pseudodifferential operators, paradifferential operators, and layer potentials. MR**1766415****32.**Monica Visan,*The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions*, Duke Math. J.**138**(2007), no. 2, 281–374. MR**2318286**, 10.1215/S0012-7094-07-13825-0

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35L71

Retrieve articles in all journals with MSC (2010): 35L71

Additional Information

**Rowan Killip**

Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90095-1555

**Monica Visan**

Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90095-1555

DOI:
https://doi.org/10.1090/S0002-9939-2010-10615-9

Received by editor(s):
February 8, 2010

Received by editor(s) in revised form:
May 26, 2010

Published electronically:
November 1, 2010

Additional Notes:
The first author was supported by NSF grant DMS-0701085

The second author was supported by NSF grant DMS-0901166

Communicated by:
Hart F. Smith

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.