A comparison inequality for rational functions
Author:
Xin Li
Journal:
Proc. Amer. Math. Soc. 139 (2011), 16591665
MSC (2010):
Primary 26D10, 26Cxx; Secondary 30A10, 30C15
Published electronically:
September 16, 2010
MathSciNet review:
2763755
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We establish a new inequality for rational functions and show that it implies many inequalities for polynomials and their polar derivatives.
 1.
Abdul
Aziz, Inequalities for the polar derivative of a polynomial,
J. Approx. Theory 55 (1988), no. 2, 183–193. MR 965215
(89m:30010), http://dx.doi.org/10.1016/00219045(88)900858
 2.
Abdul
Aziz and W.
M. Shah, Inequalities for the polar derivative of a
polynomial, Indian J. Pure Appl. Math. 29 (1998),
no. 2, 163–173. MR 1623254
(2000b:30002)
 3.
Peter
Borwein and Tamás
Erdélyi, Polynomials and polynomial inequalities,
Graduate Texts in Mathematics, vol. 161, SpringerVerlag, New York,
1995. MR
1367960 (97e:41001)
 4.
Peter
Borwein and Tamás
Erdélyi, Sharp extensions of Bernstein’s inequality to
rational spaces, Mathematika 43 (1996), no. 2,
413–423 (1997). MR 1433285
(97k:26014), http://dx.doi.org/10.1112/S0025579300011876
 5.
F.
F. Bonsall and Morris
Marden, Critical points of rational functions
with selfinversive polynomial factors, Proc.
Amer. Math. Soc. 5
(1954), 111–114. MR 0060016
(15,613a), http://dx.doi.org/10.1090/S00029939195400600166
 6.
N.
K. Govil, On the derivative of a
polynomial, Proc. Amer. Math. Soc. 41 (1973), 543–546. MR 0325932
(48 #4278), http://dx.doi.org/10.1090/S00029939197303259328
 7.
N.
K. Govil, Griffith
Nyuydinkong, and Berhanu
Tameru, Some 𝐿^{𝑝} inequalities for the polar
derivative of a polynomial, J. Math. Anal. Appl. 254
(2001), no. 2, 618–626. MR 1805528
(2001m:41007), http://dx.doi.org/10.1006/jmaa.2000.7267
 8.
Peter
D. Lax, Proof of a conjecture of P. Erdös
on the derivative of a polynomial, Bull. Amer.
Math. Soc. 50
(1944), 509–513. MR 0010731
(6,61f), http://dx.doi.org/10.1090/S000299041944081779
 9.
Xin
Li, R.
N. Mohapatra, and R.
S. Rodriguez, Bernsteintype inequalities for rational functions
with prescribed poles, J. London Math. Soc. (2) 51
(1995), no. 3, 523–531. MR 1332889
(96b:30005), http://dx.doi.org/10.1112/jlms/51.3.523
 10.
M.
A. Malik and M.
C. Vong, Inequalities concerning the derivative of
polynomials, Rend. Circ. Mat. Palermo (2) 34 (1985),
no. 3, 422–426 (1986). MR 848119
(88c:41026), http://dx.doi.org/10.1007/BF02844535
 11.
Morris
Marden, Geometry of polynomials, Second edition. Mathematical
Surveys, No. 3, American Mathematical Society, Providence, R.I., 1966. MR 0225972
(37 #1562)
 12.
R.N. Mohapatra and W.M. Shah, Inequalities for the polar derivative of a polynomial, preprint, 2008.
 13.
Q.
I. Rahman and G.
Schmeisser, Analytic theory of polynomials, London
Mathematical Society Monographs. New Series, vol. 26, The Clarendon
Press, Oxford University Press, Oxford, 2002. MR 1954841
(2004b:30015)
 14.
V.I. Smirnov and N.A. Lebedev, Function of a Complex Variable, English edition, Iliffe Books, Landon, 1968.
 1.
 A. Aziz, Inequalities for the polar derivative of a polynomial, J. Approx. Theory, 55 (1988), 183193. MR 965215 (89m:30010)
 2.
 A. Aziz and W.M. Shah, Inequalities for the polar derivative of a polynomial, Indian J. Pure Appl. Math., 29 (1998), 163173. MR 1623254 (2000b:30002)
 3.
 P. Borwein and T. Erdélyi, Polynomial Inequalities, SpringerVerlag, New York, 1995. MR 1367960 (97e:41001)
 4.
 P. Borwein and T. Erdélyi, Sharp extensions of Bernstein inequalities to rational spaces, Mathematika, 43 (1996), 413423. MR 1433285 (97k:26014)
 5.
 F.F. Bonsall and M. Marden, Critical points of rational functions with selfinversive polynomial factors, Proc. Amer. Soc., 5 (1954), 111114. MR 0060016 (15:613a)
 6.
 N.K. Govil, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543546. MR 0325932 (48:4278)
 7.
 N.K. Govil, G. Nyuydinkong, and B. Tameru, Some inequalities for the polar derivative of a polynomial, J. Math. Anal. Appl., 254 (2001), 618626. MR 1805528 (2001m:41007)
 8.
 P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509513. MR 0010731 (6:61f)
 9.
 X. Li, R.N. Mohapatra, and R.S. Rodgriguez, Bernsteintype inequalities for rational functions with prescribed poles, J. London Math. Soc., 51 (1995), 523531. MR 1332889 (96b:30005)
 10.
 M.A. Malik and M.C. Vong, Inequalities concerning the derivative of polynomials, Rendiconts Del Circolo Matematico Di Palermo Serie II, 34 (1985), 422426. MR 848119 (88c:41026)
 11.
 M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer. Math. Soc., Providence, Rhode Island, 1966. MR 0225972 (37:1562)
 12.
 R.N. Mohapatra and W.M. Shah, Inequalities for the polar derivative of a polynomial, preprint, 2008.
 13.
 Q.I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, Oxford, 2002. MR 1954841 (2004b:30015)
 14.
 V.I. Smirnov and N.A. Lebedev, Function of a Complex Variable, English edition, Iliffe Books, Landon, 1968.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
26D10,
26Cxx,
30A10,
30C15
Retrieve articles in all journals
with MSC (2010):
26D10,
26Cxx,
30A10,
30C15
Additional Information
Xin Li
Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816
Email:
xli@math.ucf.edu
DOI:
http://dx.doi.org/10.1090/S00029939201010624X
PII:
S 00029939(2010)10624X
Keywords:
Bernstein inequality,
rational functions,
polar derivative
Received by editor(s):
February 4, 2010
Received by editor(s) in revised form:
May 17, 2010
Published electronically:
September 16, 2010
Communicated by:
Walter Van Assche
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
