A comparison inequality for rational functions

Author:
Xin Li

Journal:
Proc. Amer. Math. Soc. **139** (2011), 1659-1665

MSC (2010):
Primary 26D10, 26Cxx; Secondary 30A10, 30C15

DOI:
https://doi.org/10.1090/S0002-9939-2010-10624-X

Published electronically:
September 16, 2010

MathSciNet review:
2763755

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a new inequality for rational functions and show that it implies many inequalities for polynomials and their polar derivatives.

**1.**A. Aziz,*Inequalities for the polar derivative of a polynomial*, J. Approx. Theory,**55**(1988), 183-193. MR**965215 (89m:30010)****2.**A. Aziz and W.M. Shah,*Inequalities for the polar derivative of a polynomial*, Indian J. Pure Appl. Math.,**29**(1998), 163-173. MR**1623254 (2000b:30002)****3.**P. Borwein and T. Erdélyi,*Polynomial Inequalities*, Springer-Verlag, New York, 1995. MR**1367960 (97e:41001)****4.**P. Borwein and T. Erdélyi,*Sharp extensions of Bernstein inequalities to rational spaces*, Mathematika,**43**(1996), 413-423. MR**1433285 (97k:26014)****5.**F.F. Bonsall and M. Marden,*Critical points of rational functions with self-inversive polynomial factors*, Proc. Amer. Soc.,**5**(1954), 111-114. MR**0060016 (15:613a)****6.**N.K. Govil,*On the derivative of a polynomial*, Proc. Amer. Math. Soc.,**41**(1973), 543-546. MR**0325932 (48:4278)****7.**N.K. Govil, G. Nyuydinkong, and B. Tameru,*Some inequalities for the polar derivative of a polynomial*, J. Math. Anal. Appl.,**254**(2001), 618-626. MR**1805528 (2001m:41007)****8.**P.D. Lax,*Proof of a conjecture of P. Erdös on the derivative of a polynomial*, Bull. Amer. Math. Soc.,**50**(1944), 509-513. MR**0010731 (6:61f)****9.**X. Li, R.N. Mohapatra, and R.S. Rodgriguez,*Bernstein-type inequalities for rational functions with prescribed poles*, J. London Math. Soc.,**51**(1995), 523-531. MR**1332889 (96b:30005)****10.**M.A. Malik and M.C. Vong,*Inequalities concerning the derivative of polynomials*, Rendiconts Del Circolo Matematico Di Palermo Serie II,**34**(1985), 422-426. MR**848119 (88c:41026)****11.**M. Marden,*Geometry of Polynomials*, Math. Surveys, No. 3, Amer. Math. Soc., Providence, Rhode Island, 1966. MR**0225972 (37:1562)****12.**R.N. Mohapatra and W.M. Shah,*Inequalities for the polar derivative of a polynomial*, preprint, 2008.**13.**Q.I. Rahman and G. Schmeisser,*Analytic theory of polynomials*, Oxford University Press, Oxford, 2002. MR**1954841 (2004b:30015)****14.**V.I. Smirnov and N.A. Lebedev,*Function of a Complex Variable*, English edition, Iliffe Books, Landon, 1968.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
26D10,
26Cxx,
30A10,
30C15

Retrieve articles in all journals with MSC (2010): 26D10, 26Cxx, 30A10, 30C15

Additional Information

**Xin Li**

Affiliation:
Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Email:
xli@math.ucf.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10624-X

Keywords:
Bernstein inequality,
rational functions,
polar derivative

Received by editor(s):
February 4, 2010

Received by editor(s) in revised form:
May 17, 2010

Published electronically:
September 16, 2010

Communicated by:
Walter Van Assche

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.