An infinity Laplace equation with gradient term and mixed boundary conditions

Authors:
Scott N. Armstrong, Charles K. Smart and Stephanie J. Somersille

Journal:
Proc. Amer. Math. Soc. **139** (2011), 1763-1776

MSC (2010):
Primary 35J70, 35J75, 91A15

Published electronically:
October 29, 2010

MathSciNet review:
2763764

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain existence, uniqueness, and stability results for the modified 1-homogeneous infinity Laplace equation

**1.**Scott N. Armstrong and Charles K. Smart,*An easy proof of Jensen’s theorem on the uniqueness of infinity harmonic functions*, Calc. Var. Partial Differential Equations**37**(2010), no. 3-4, 381–384. MR**2592977**, 10.1007/s00526-009-0267-9**2.**-,*A finite difference approach to the infinity Laplace equation and tug-of-war games*, Trans. Amer. Math. Soc. (in press).**3.**E. N. Barron, L. C. Evans, and R. Jensen,*The infinity Laplacian, Aronsson’s equation and their generalizations*, Trans. Amer. Math. Soc.**360**(2008), no. 1, 77–101. MR**2341994**, 10.1090/S0002-9947-07-04338-3**4.**Fernando Charro, Jesus García Azorero, and Julio D. Rossi,*A mixed problem for the infinity Laplacian via tug-of-war games*, Calc. Var. Partial Differential Equations**34**(2009), no. 3, 307–320. MR**2471139**, 10.1007/s00526-008-0185-2**5.**M. G. Crandall, L. C. Evans, and R. F. Gariepy,*Optimal Lipschitz extensions and the infinity Laplacian*, Calc. Var. Partial Differential Equations**13**(2001), no. 2, 123–139. MR**1861094****6.**E. Le Gruyer,*On absolutely minimizing Lipschitz extensions and PDE Δ_{∞}(𝑢)=0*, NoDEA Nonlinear Differential Equations Appl.**14**(2007), no. 1-2, 29–55. MR**2346452**, 10.1007/s00030-006-4030-z**7.**E. Le Gruyer and J. C. Archer,*Harmonious extensions*, SIAM J. Math. Anal.**29**(1998), no. 1, 279–292 (electronic). MR**1617186**, 10.1137/S0036141095294067**8.**G. Lu and P. Wang,*Infinity Laplace equation with non-trivial right-hand-side*, Electron. J. Differential Equations**77**(2010), 1-12.**9.**Y. Peres, G. Pete, and S. Somersille,*Biased tug-of-war, the biased infinity Laplacian, and comparison with exponential cones*, Calc. Var. Partial Differential Equations**38**(2010), no. 3, 541-564.**10.**Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson,*Tug-of-war and the infinity Laplacian*, J. Amer. Math. Soc.**22**(2009), no. 1, 167–210. MR**2449057**, 10.1090/S0894-0347-08-00606-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35J70,
35J75,
91A15

Retrieve articles in all journals with MSC (2010): 35J70, 35J75, 91A15

Additional Information

**Scott N. Armstrong**

Affiliation:
Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803

Email:
armstrong@math.lsu.edu

**Charles K. Smart**

Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720

Email:
smart@math.berkeley.edu

**Stephanie J. Somersille**

Affiliation:
Department of Mathematics, University of Texas, Austin, Texas 78712

Email:
steph@math.utexas.edu

DOI:
https://doi.org/10.1090/S0002-9939-2010-10666-4

Keywords:
Infinity Laplace equation,
comparison principle

Received by editor(s):
November 1, 2009

Received by editor(s) in revised form:
May 23, 2010

Published electronically:
October 29, 2010

Communicated by:
Matthew J. Gursky

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.