Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Maximal univalent disks of real rational functions and Hermite-Biehler polynomials


Authors: Vladimir P. Kostov, Boris Shapiro and Mikhail Tyaglov
Journal: Proc. Amer. Math. Soc. 139 (2011), 1625-1635
MSC (2010): Primary 26C05; Secondary 30C15
DOI: https://doi.org/10.1090/S0002-9939-2010-10778-5
Published electronically: November 4, 2010
MathSciNet review: 2763752
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The well-known Hermite-Biehler theorem claims that a univariate monic polynomial $ s$ of degree $ k$ has all roots in the open upper half-plane if and only if $ s=p+iq$, where $ p$ and $ q$ are real polynomials of degree $ k$ and $ k-1$ respectively with all real, simple and interlacing roots, and $ q$ has a negative leading coefficient. Considering roots of $ p$ as cyclically ordered on $ \mathbb{R}P^1$ we show that the open disk in $ \mathbb{C} P^1$ having a pair of consecutive roots of $ p$ as its diameter is the maximal univalent disk for the function $ R=\frac{q}{p}$. This solves a special case of the so-called Hermite-Biehler problem.


References [Enhancements On Off] (What's this?)

  • 1. J. P. Dedieu, Obreschkoff's theorem revisited: What convex sets are contained in the set of hyperbolic polynomials?, J. Pure and Appl. Algebra (1992), 269-278. MR 1179101 (93g:12001)
  • 2. K. Dilcher, K. B. Stolarsky, Zeros of the Wronskian of a polynomial, J. Math. Anal. Appl. 162 (1991), 430-451. MR 1137630 (92m:30008)
  • 3. A. Eremenko, A. Gabrielov, Degrees of real Wronski maps. Discrete Comput. Geom. 28 (2002), no. 3, 331-347. MR 1923956 (2003g:14074)
  • 4. A. Eremenko, A. Gabrielov, The Wronski map and Grassmannians of real codimension $ 2$ subspaces. Comput. Methods Funct. Theory 1 (2001), no. 1, 1-25. MR 1931599 (2003h:26022)
  • 5. S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833.
  • 6. O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts Math., Vol. 109, Springer-Verlag, 1986. MR 867407 (88f:30073)
  • 7. M. Marden, Geometry of Polynomials, Math. Surveys, no. 3, Amer. Math. Soc., Providence, RI, 1966. MR 0225972 (37:1562)
  • 8. Z. Nehari, The Schwarzian derivative and schlicht functions. Bull. Amer. Math. Soc. 55 (1949), 545-551. MR 0029999 (10:696e)
  • 9. Q. I. Rahman, G. Schmeisser, Analytic theory of polynomials, London Math. Soc. Monogr. (N. S.), Vol. 26, Oxford Univ. Press, New York, NY, 2002. MR 1954841 (2004b:30015)
  • 10. S. Zakeri, On critical points of proper holomorphic maps on the unit disk. Bull. London Math. Soc. 30 (1998), no. 1, 62-66. MR 1479037 (99d:30009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26C05, 30C15

Retrieve articles in all journals with MSC (2010): 26C05, 30C15


Additional Information

Vladimir P. Kostov
Affiliation: Laboratoire de Mathématiques, Université de Nice, Parc Valrose, 06108 Nice Cedex 2, France
Email: kostov@unice.fr

Boris Shapiro
Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
Email: shapiro@math.su.se

Mikhail Tyaglov
Affiliation: Institut für Mathematik, MA 4-5 Technische Universität Berlin, D-10623 Berlin, Germany
Email: tyaglov@math.tu-berlin.de

DOI: https://doi.org/10.1090/S0002-9939-2010-10778-5
Keywords: Hermite-Biehler theorem, root localization
Received by editor(s): May 4, 2010
Published electronically: November 4, 2010
Additional Notes: The third author was supported by the Sofja Kovalevskaja Research Prize of the Alexander von Humboldt Foundation.
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society