Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Runge theorem for slice hyperholomorphic functions


Authors: Fabrizio Colombo, Irene Sabadini and Daniele C. Struppa
Journal: Proc. Amer. Math. Soc. 139 (2011), 1787-1803
MSC (2010): Primary 30G35; Secondary 30B10, 30C10
DOI: https://doi.org/10.1090/S0002-9939-2010-10812-2
Published electronically: December 13, 2010
MathSciNet review: 2763766
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we introduce and study rational slice monogenic functions. After proving a decomposition theorem for such functions, we are able to prove the Runge approximation theorem for slice monogenic functions. We then show how a similar argument can be used to obtain an analogue of the Runge approximation theorem in the slice regular setting.


References [Enhancements On Off] (What's this?)

  • 1. F. Brackx, R. Delanghe, F. Sommen, Clifford Analysis, Pitman Res. Notes in Math., 76, 1982. MR 697564 (85j:30103)
  • 2. F. Colombo, G. Gentili, I. Sabadini, A Cauchy kernel for slice regular functions, Ann. Global Anal. Geom., 37 (2010), 361-378. MR 2601496
  • 3. F. Colombo, G. Gentili, I. Sabadini, D.C. Struppa, Non commutative functional calculus: Bounded operators, Complex Analysis and Operator Theory, 4 (2010), 821-843.
  • 4. F. Colombo, G. Gentili, I. Sabadini, D.C. Struppa, Non commutative functional calculus: Unbounded operators, J. Geom. Phys., 60 (2010), 251-259. MR 2587392
  • 5. F. Colombo, I. Sabadini, On some properties of the quaternionic functional calculus, J. Geom. Anal., 19 (2009), 601-627. MR 2496568 (2010h:47024)
  • 6. F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004. MR 2089988 (2005m:30052)
  • 7. F. Colombo, I. Sabadini, D.C. Struppa, A new functional calculus for noncommuting operators, J. Funct. Anal., 254 (2008), 2255-2274. MR 2402108 (2009e:47017)
  • 8. F. Colombo, I. Sabadini, D.C. Struppa, Slice monogenic functions, Israel J. Math., 171 (2009), 385-403. MR 2520116 (2010e:30039)
  • 9. F. Colombo, I. Sabadini, D.C. Struppa, Extension properties for slice monogenic functions, Israel J. Math., 177 (2010), 369-389. MR 2520116 (2010e:30039)
  • 10. F. Colombo, I. Sabadini, D.C. Struppa, Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math., 645 (2010), 85-104. MR 2673423
  • 11. F.Colombo, G. Gentili, I. Sabadini, D.C. Struppa, Extension results for slice regular functions of a quaternionic variable, Adv. Math., 222 (2009), 1793-1808. MR 2555912 (2010j:30102)
  • 12. F. Colombo, I. Sabadini, A structure formula for slice monogenic functions and some of its consequences, Hypercomplex Analysis, Trends in Mathematics, Birkhäuser, 2009, 101-114.
  • 13. F. Colombo, I. Sabadini, D. C. Struppa, The Pompeiu formula for slice hyperholomorphic functions, to appear in Michigan J. Math. (2011).
  • 14. C. G. Cullen, An integral theorem for analytic intrinsic functions on quaternions, Duke Math. J., 32 (1965), 139-148. MR 0173012 (30:3227)
  • 15. R. Fueter, Die Funktionentheorie der Differentialgleichungen $ \bigtriangleup u = 0$ und $ \bigtriangleup \bigtriangleup u = 0$ mit vier reellen Variablen, Comm. Math. Helv., 7 (1934), 307-330. MR 1509515
  • 16. G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C.R. Acad. Sci. Paris, 342 (2006), 741-744. MR 2227751 (2006m:30095)
  • 17. G. Gentili, D.C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math., 216 (2007), 279-301. MR 2353257 (2008h:30052)
  • 18. R. Ghiloni, A. Perotti, Slice regular functions on real alternative algebras, Adv. Math., 226 (2011), 1662-1691.
  • 19. W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)
  • 20. C. Stoppato, Poles of regular quaternionic functions, Compl. Var. and Elliptic Equa., 54 (2009), 1001-1018. MR 2572530 (2010k:30062)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30G35, 30B10, 30C10

Retrieve articles in all journals with MSC (2010): 30G35, 30B10, 30C10


Additional Information

Fabrizio Colombo
Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi, 9, 20133 Milano, Italy
Email: fabrizio.colombo@polimi.it

Irene Sabadini
Affiliation: Dipartimento di Matematica, Politecnico di Milano, Via Bonardi, 9, 20133 Milano, Italy
Email: irene.sabadini@polimi.it

Daniele C. Struppa
Affiliation: Department of Mathematics, Schmid College of Science, Chapman University, Orange, California 92866
Email: struppa@chapman.edu

DOI: https://doi.org/10.1090/S0002-9939-2010-10812-2
Received by editor(s): May 25, 2010
Published electronically: December 13, 2010
Communicated by: Franc Forstneric
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society