Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)



On fields of definition of torsion points of elliptic curves with complex multiplication

Authors: Luis Dieulefait, Enrique González-Jiménez and Jorge Jiménez Urroz
Journal: Proc. Amer. Math. Soc. 139 (2011), 1961-1969
MSC (2010): Primary 11G05; Secondary 11F80
Published electronically: November 9, 2010
MathSciNet review: 2775372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any elliptic curve $ E$ defined over the rationals with complex multiplication (CM) and for every prime $ p$, we describe the image of the mod $ p$ Galois representation attached to $ E$. We deduce information about the field of definition of torsion points of these curves; in particular, we classify all cases where there are torsion points over Galois number fields not containing the field of definition of the CM.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G05, 11F80

Retrieve articles in all journals with MSC (2010): 11G05, 11F80

Additional Information

Luis Dieulefait
Affiliation: Departament d’Algebra i Geometria, Universitat de Barcelona, G. V. de les Corts Catalanes 585, 08007 Barcelona, Spain

Enrique González-Jiménez
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid and Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), 28049 Madrid, Spain

Jorge Jiménez Urroz
Affiliation: Departament de Matemàtica Aplicada IV, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain

Keywords: Elliptic curves, torsion, Galois representation
Received by editor(s): March 16, 2010
Received by editor(s) in revised form: June 2, 2010
Published electronically: November 9, 2010
Additional Notes: The authors were partially supported by the grants MTM2006-04895 (Ministerio de Educación y Ciencia of Spain), MTM2009-07291 (Ministerio de Ciencia e Innovación of Spain), CCG08-UAM/ESP-3906 (Universidad Autónoma de Madrid and Comunidad de Madrid), and MTM2009-11068 (Ministerio de Ciencia e Innovación of Spain) respectively.
Communicated by: Ken Ono
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia