Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Harmonic functions of polynomial growth on singular spaces with nonnegative Ricci curvature


Author: Bobo Hua
Journal: Proc. Amer. Math. Soc. 139 (2011), 2191-2205
MSC (2010): Primary 51F99, 31C05
DOI: https://doi.org/10.1090/S0002-9939-2010-10635-4
Published electronically: November 17, 2010
MathSciNet review: 2775397
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we will derive the Liouville theorem and the finite dimension theorem for polynomial growth harmonic functions defined on Alexandrov spaces with nonnegative Ricci curvature in the sense of Kuwae-Shioya and Sturm-Lott-Villani.


References [Enhancements On Off] (What's this?)

  • 1. D. Burago, Yu. Burago and S. Ivanov, A course in metric geometry. American Mathematical Society, Providence, RI, 2001. MR 1835418 (2002e:53053)
  • 2. Yu. Burago, M. Gromov and G. Perelman, A. D. Aleksandrov spaces with curvatures bounded below, Russ. Math. Surv. 47 (1992), 1-58. MR 1185284 (93m:53035)
  • 3. T.H. Colding and W.P. Minicozzi, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725-747. MR 1491451 (98m:53052)
  • 4. T.H. Colding and W.P. Minicozzi, Weyl type bounds for harmonic functions, Invent. Math. 131 (1998), no. 2, 257-298. MR 1608571 (99b:53052)
  • 5. A. Grigor'yan, The heat equation on noncompact Riemannian manifolds (Russian), Mat. Sb. 182 (1991), no. 1, 55-87; translation in Math. USSR-Sb. 72 (1992), no. 1, 47-77. MR 1098839 (92h:58189)
  • 6. B. Hua, Generalized Liouville theorem in nonnegatively curved Alexandrov spaces, Chin. Ann. Math. Ser. B 30 (2009), no. 2, 111-128. MR 2487589 (2010d:53043)
  • 7. Q. Han and F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, 1. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997. MR 1669352 (2001d:35035)
  • 8. K. Kuwae, Y. Machigashira and T. Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269-316. MR 1865418 (2002m:58052)
  • 9. K. Kuwae and T. Shioya, Laplacian comparison for Alexandrov spaces, Comm. Anal. Geom. 5 (1997), no. 2, 333-387.
  • 10. K. Kuwae and T. Shioya, On generalized measure contraction property and energy functionals over Lipschitz maps, Potential Anal. 15 (2001), no. 1-2, 105-121. MR 1838897 (2002f:31022)
  • 11. N. Korevaar and R. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), no. 2, 333-387. MR 1483983 (99b:58061)
  • 12. P. Li, Harmonic sections of polynomial growth, Math. Res. Lett. 4 (1997), no. 1, 35-44. MR 1432808 (98i:53054)
  • 13. P. Li, Harmonic functions and applications to complete manifolds, XIV School of Differential Geometry, IMPA, Rio de Janeiro, 2006. MR 2369440 (2009a:53056)
  • 14. J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169, 3 (2009), 903-991. MR 2480619
  • 15. J. Moser, A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468. MR 0170091 (30:332)
  • 16. Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629-658. MR 1274133 (95e:53062)
  • 17. G. Perelman, DC-structure on Alexandrov space, preprint.
  • 18. A. Petrunin, Alexandrov meets Lott-Villani-Sturm, preprint.
  • 19. A. Petrunin, Subharmonic functions on Alexandrov space, preprint.
  • 20. L. Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series, 289. Cambridge University Press, Cambridge, 2002. MR 1872526 (2003c:46048)
  • 21. L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 1992, no. 2, 27-38. MR 1150597 (93d:58158)
  • 22. K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65-131. MR 2237206 (2007k:53051a)
  • 23. K.T. Sturm, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133-177. MR 2237207 (2007k:53051b)
  • 24. L.-F. Tam, A note on harmonic forms on complete manifolds, Proc. Amer. Math. Soc. 126 (1998), no. 10, 3097-3108. MR 1459152 (99a:53047)
  • 25. C. Villani, Optimal transport. Old and new, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. MR 2459454 (2010f:49001)
  • 26. S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. MR 0431040 (55:4042)
  • 27. S.T. Yau, Nonlinear analysis in geometry, Enseign. Math. 33 (2), 1987, 109-158. MR 896385 (88g:58003)
  • 28. S.T. Yau, Differential Geometry: Partial Differential Equations on Manifolds, Proc. of Symposia in Pure Mathematics, 54, part 1, ed. by R. Greene and S.T. Yau, 1993. MR 1216573 (94k:53001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 51F99, 31C05

Retrieve articles in all journals with MSC (2010): 51F99, 31C05


Additional Information

Bobo Hua
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
Email: 071018011@fudan.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2010-10635-4
Keywords: Alexandrov spaces, harmonic functions.
Received by editor(s): April 12, 2010
Received by editor(s) in revised form: April 19, 2010, and June 6, 2010
Published electronically: November 17, 2010
Communicated by: Jianguo Cao
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society