Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A one-parameter family of Pick functions defined by the Gamma function and related to the volume of the unit ball in $ n$-space


Authors: Christian Berg and Henrik L. Pedersen
Journal: Proc. Amer. Math. Soc. 139 (2011), 2121-2132
MSC (2010): Primary 33B15; Secondary 30E20, 30E15
DOI: https://doi.org/10.1090/S0002-9939-2010-10636-6
Published electronically: November 19, 2010
MathSciNet review: 2775390
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that

$\displaystyle F_a(x)=\frac{\ln \Gamma (x+1)}{x\ln(ax)} $

can be considered as a Pick function when $ a\ge 1$, i.e. extends to a holomorphic function mapping the upper half-plane into itself. We also consider the function

$\displaystyle f(x)=\left(\frac{\pi^{x/2}}{\Gamma(1+x/2)}\right)^{1/(x\ln x)} $

and show that $ \ln f(x+1)$ is a Stieltjes function and that $ f(x+1)$ is completely monotonic on $ ]0,\infty[$. In particular, $ f(n)=\Omega_n^{1/(n\ln n)},n\ge 2$, is a Hausdorff moment sequence. Here $ \Omega_n$ is the volume of the unit ball in Euclidean $ n$-space.


References [Enhancements On Off] (What's this?)

  • 1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis. English translation, Oliver and Boyd, Edinburgh, 1965. MR 0184042 (32:1518)
  • 2. H. Alzer, Inequalities for the Volume of the Unit Ball in $ \mathbb{R}^n$. II, Mediterr. J. Math. 5 (2008), 395-413. MR 2465568 (2009j:26018)
  • 3. G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Special functions of quasiconformal theory, Expo. Math. 7 (1989), 97-136. MR 1001253 (90k:30032)
  • 4. G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Topics in special functions, Papers on analysis, 5-26, Rep. Univ. Jyväskylä Dep. Math. Stat., 83, 2001, Univ. Jyväskylä. MR 1886609 (2003e:33001)
  • 5. G. D. Anderson, S.-L. Qiu, A monotonicity property of the gamma function, Proc. Amer. Math. Soc. 125 (1997), 3355-3362. MR 1425110 (98h:33001)
  • 6. E. Artin, The Gamma Function. Holt, Rinehart and Winston, New York, 1964. MR 0165148 (29:2437)
  • 7. C. Berg, Integral representation of some functions related to the Gamma function, Mediterr. J. Math. 1 (2004), 433-439. MR 2112748 (2005h:33002)
  • 8. C. Berg, J. P. R. Christensen, P. Ressel, Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics, vol. 100, Springer-Verlag, Berlin-Heidelberg-New York, 1984. MR 747302 (86b:43001)
  • 9. C. Berg, G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin-Heidelberg-New York, 1975. MR 0481057 (58:1204)
  • 10. C. Berg, H. L. Pedersen, A completely monotone function related to the Gamma function, J. Comput. Appl. Math. 133 (2001), 219-230. MR 1858281 (2003k:33001)
  • 11. C. Berg, H. L. Pedersen, Pick functions related to the gamma function, Rocky Mount. J. Math. 32 (2002), 507-525. MR 1934903 (2004h:33007)
  • 12. W. F. Donoghue Jr., Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0486556 (58:6279)
  • 13. A. Elbert, A. Laforgia, On some properties of the Gamma function, Proc. Amer. Math. Soc. 128 (2000), 2667-2673. MR 1694859 (2000m:33002)
  • 14. S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. 355 (2009), 33-40. MR 2514449 (2010e:33004)
  • 15. C. Mortici, Monotonicity properties of the volume of the unit ball in $ \mathbb{R}^n$, Optim. Lett. 4 (2010), 457-464.
  • 16. Feng Qi, Bai-Ni Guo, Monotonicity and logarithmic convexity relating to the volume of the unit ball, arXiv:0902.2509v1[math.CA].
  • 17. Feng Qi, Bai-Ni Guo, Chao-Ping Chen, Some completely monotonic functions involving the gamma and polygamma functions, J. Aust. Math. Soc. 80 (2006), no. 1, 81-88. MR 2212317 (2007b:33004)
  • 18. S.-L. Qiu, M. Vuorinen, Some properties of the gamma and psi functions, with applications, Math. Comp. 74 (2005), 723-742. MR 2114645 (2005i:33002)
  • 19. T. J. Stieltjes, Sur le développement de $ \log\Gamma(a)$, J. Math. Pures Appl., Sér. 4, 5 (1889), 425-444. In Collected Papers, Volume II, pp. 215-234, edited by G. van Dijk, Springer, Berlin-Heidelberg-New York, 1993. MR 1272017 (95g:01033)
  • 20. D. V. Widder, The Laplace Transform. Princeton University Press, Princeton, NJ, 1941. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33B15, 30E20, 30E15

Retrieve articles in all journals with MSC (2010): 33B15, 30E20, 30E15


Additional Information

Christian Berg
Affiliation: Institute of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
Email: berg@math.ku.dk

Henrik L. Pedersen
Affiliation: Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
Email: henrikp@dina.kvl.dk

DOI: https://doi.org/10.1090/S0002-9939-2010-10636-6
Keywords: Gamma function, completely monotonic function, Pick function
Received by editor(s): December 10, 2009
Received by editor(s) in revised form: June 9, 2010
Published electronically: November 19, 2010
Additional Notes: Both authors acknowledge support by grant 272-07-0321 from the Danish Research Council for Nature and Universe.
Communicated by: Walter Van Assche
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society