Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Low-dimensional manifolds with non-negative curvature and maximal symmetry rank


Authors: Fernando Galaz-Garcia and Catherine Searle
Journal: Proc. Amer. Math. Soc. 139 (2011), 2559-2564
MSC (2010): Primary 53C20; Secondary 57S25
DOI: https://doi.org/10.1090/S0002-9939-2010-10655-X
Published electronically: December 3, 2010
MathSciNet review: 2784821
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify closed, simply connected $ n$-manifolds of non-negative sectional curvature admitting an isometric torus action of maximal symmetry rank in dimensions $ 2\leq n\leq 6$. In dimensions $ 3k$, $ k=1,2$ there is only one such manifold and it is diffeomorphic to the product of $ k$ copies of the $ 3$-sphere.


References [Enhancements On Off] (What's this?)

  • 1. Bredon, G., ``Introduction to compact transformation groups'', Pure and Applied Math., vol. 46, Academic Press, 1972. MR 0413144 (54:1265)
  • 2. Cheeger, J., ``Some examples of manifolds of nonnegative curvature'', J. Differential Geom., vol. 8, 623-628 (1973). MR 0341334 (49:6085)
  • 3. Grove, K., Searle, C. ``Positively curved manifolds with maximal symmetry rank'', J. Pure Appl. Algebra, vol. 91, 137-142 (1994). MR 1255926 (95i:53040)
  • 4. Kim, S., McGavran, D., Pak, J., ``Torus group actions in simply connected manifolds'', Pacific J. Math., vol. 53, no. 2, 435-444 (1974). MR 0368051 (51:4293)
  • 5. Mostert, P. S., ``On a compact Lie group acting on a manifold'', Ann. of Math. (2), vol. 65, 447-455 (1957). MR 0085460 (19:44b)
  • 6. Neumann, W. D., ``$ 3$-dimensional $ G$-manifolds with $ 2$-dimensional orbits'', 1968 Proc. Conf. on Transformation Groups (New Orleans, La., 1967), Springer, New York, 220-222. MR 0245043 (39:6355)
  • 7. Oh, H. S., ``Toral actions on $ 5$-manifolds'', Trans. Amer. Math. Soc., vol. 278, no. 1, 233-252 (1983). MR 697072 (85b:57043)
  • 8. Oh, H.S., ``6-dimensional manifolds with effective $ T^4$-actions'', Topology Appl., vol. 13, 137-154 (1982). MR 644109 (83c:57018)
  • 9. Orlik, P., Raymond, F. ``Actions of the torus on $ 4$-manifolds. I'', Trans. Amer. Math. Soc., vol. 152, 531-559 (1970). MR 0268911 (42:3808)
  • 10. Orlik, P., Raymond, F. ``Actions of the torus on $ 4$-manifolds. II'', Topology, vol. 13, 89-112 (1974). MR 0348779 (50:1274)
  • 11. Pak, J., ``Actions of the torus $ T^n$ on $ (n+1)$-manifolds $ M^{n+1}$'', Pacific J. Math., vol. 44, 671-674 (1973). MR 0322892 (48:1253)
  • 12. Parker, J., ``$ 4$-dimensional $ G$-manifolds with $ 3$-dimensional orbit'', Pacific J. Math., vol. 125, no. 1, 187-204 (1986). MR 860758 (88e:57033)
  • 13. Pao, P. S., ``The topological structure of $ 4$-manifolds with effective torus actions. I'', Trans. Amer. Math. Soc., vol. 227, 279-317 (1977). MR 0431231 (55:4232)
  • 14. Pao, P. S. ``The topological structure of $ 4$-manifolds with effective torus actions. II'', Illinois J. Math., vol. 21, no. 4, 883-894 (1977). MR 0455000 (56:13241)
  • 15. Pavlov, A. V., ``Five dimensional biquotients of Lie groups'', translation in Siberian Math. J., vol. 45, no. 6, 1080-1083 (2004). MR 2123295 (2005j:57042)
  • 16. Totaro, B., ``Cheeger manifolds and the classification of biquotients'', J. Differential Geom., vol. 61, no. 3, 397-451 (2002) . MR 1979366 (2004b:53075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C20, 57S25

Retrieve articles in all journals with MSC (2010): 53C20, 57S25


Additional Information

Fernando Galaz-Garcia
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
Email: f.galaz-garcia@uni-muenster.de

Catherine Searle
Affiliation: Instituto de Matematicas, Unidad Cuernavaca, Universidad Autónoma de México, Cuernavaca, Morelos, Mexico
Email: csearle@matcuer.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-2010-10655-X
Received by editor(s): April 21, 2010
Received by editor(s) in revised form: June 7, 2010, and June 17, 2010
Published electronically: December 3, 2010
Additional Notes: The authors thank the American Institute of Mathematics (AIM) for its support during a workshop where the work on this paper was initiated.
The second author was supported in part by CONACYT Project #SEP-CO1-46274, CONACYT Project #SEP-82471 and UNAM DGAPA project IN-115408.
Communicated by: Jianguo Cao
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society