Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Transversely Cantor laminations as inverse limits


Authors: Fernando Alcalde Cuesta, Álvaro Lozano Rojo and Marta Macho Stadler
Journal: Proc. Amer. Math. Soc. 139 (2011), 2615-2630
MSC (2010): Primary 57R05, 57R30
DOI: https://doi.org/10.1090/S0002-9939-2010-10665-2
Published electronically: December 8, 2010
MathSciNet review: 2784831
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We demonstrate that any minimal transversely Cantor compact lamination of dimension $ p$ and class $ C^1$ without holonomy is an inverse limit of compact branched manifolds of dimension $ p$. To prove this result, we extend the triangulation theorem for $ C^1$ manifolds to transversely Cantor $ C^1$ laminations. In fact, we give a simple proof of this classical theorem based on the existence of $ C^1$-compatible differentiable structures of class $ C^\infty$.


References [Enhancements On Off] (What's this?)

  • 1. F. Alcalde Cuesta, Á. Lozano Rojo, M. Macho Stadler.
    Dynamique transverse de la lamination de Ghys-Kenyon.
    Astérisque, 323 (2009), 1-16. MR 2647961
  • 2. F. Alcalde Cuesta, P. González Sequeiros, Á. Lozano Rojo.
    Affability of Euclidean tilings.
    C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 947-952. MR 2542900
  • 3. J. Bellissard, R. Benedetti, J.-M. Gambaudo.
    Spaces of tilings, finite telescopic approximations and gap-labelling.
    Comm. Math. Phys., 261 (2006), 1-41. MR 2193205 (2007c:46063)
  • 4. R. Benedetti, J.-M. Gambaudo.
    On the dynamics of $ \mathbb{G}$-solenoids. Applications to Delone sets.
    Ergodic Theory Dynam. Systems, 23 (2003), 673-691. MR 1992658 (2004f:37019)
  • 5. M. Bermúdez, G. Hector.
    Laminations hyperfinites et revêtements.
    Ergodic Theory Dynam. Systems, 26 (2005), 305-339. MR 2218763 (2007d:37033)
  • 6. E. Blanc.
    Examples of mixed minimal foliated spaces.
    Unpublished paper, 2002.
  • 7. S. S. Cairns.
    On the triangulation of regular loci.
    Ann. of Math. (2), 35 (1934), 579-587. MR 1503181
  • 8. S. S. Cairns.
    A simple triangulation method for smooth manifolds.
    Bull. Amer. Math. Soc., 67 (1961), 389-390. MR 0149491 (26:6978)
  • 9. A. Candel, L. Conlon.
    Foliations I.
    Graduate Studies in Mathematics, 23, American Mathematical Society, Providence, RI, 2000. MR 1732868 (2002f:57058)
  • 10. É. Ghys.
    Laminations par surfaces de Riemann.
    Panor. Synthèses, 8, Soc. Math. France, Paris, 1999, 49-95. MR 1760843 (2001g:37068)
  • 11. A. Grothendieck.
    Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): III. Étude cohomologique des faisceaux cohérents, Première partie.
    Publications Mathématiques de l'I.H.É.S., 11 (1961), 5-167. MR 0217085 (36:177c)
  • 12. A. Haefliger.
    Foliations and compactly generated pseudogroups, in Foliations: geometry and dynamics (Warsaw, 2000),
    World Scientific, River Edge, NJ, 2002, 275-295. MR 1882774 (2003g:58029)
  • 13. J. L. Heitsch, C. Lazarov.
    Homotopy invariance of foliation Betti numbers.
    Invent. Math., 104 (1991), 321-347. MR 1098613 (92b:58219)
  • 14. M. W. Hirsch.
    Differential Topology.
    Springer-Verlag, New York, 1976. MR 0448362 (56:6669)
  • 15. Á. Lozano Rojo.
    Dinámica transversa de laminaciones definidas por grafos repetitivos.
    Ph.D. Thesis, UPV/EHU, 2008.
  • 16. Á. Lozano Rojo.
    An example of a non-uniquely ergodic lamination.
    To appear in Ergodic Theory Dynam. Systems. DOI:10.1017/S0143385710000064
  • 17. C. C. Moore, C. Schochet.
    Global Analysis on Foliated Spaces. Second Edition.
    Mathematical Sciences Research Institute Publications, 9. Cambridge University Press, New York, 2006. MR 2202625 (2006i:58035)
  • 18. J. R. Munkres.
    Elementary Differential Topology. Revised Edition.
    Annals of Mathematics Studies, 54, Princeton University Press, Princeton, NJ, 1966. MR 0198479 (33:6637)
  • 19. J. R. Munkres.
    Topology. Second Edition.
    Prentice Hall, Upper Saddle River, NJ, 2000. MR 0464128 (57:4063)
  • 20. A. Phillips, D. Sullivan.
    Geometry of leaves.
    Topology, 20 (1981), 209-218. MR 605659 (82f:57021)
  • 21. G. De Rham.
    Variétés différentiables: formes, courants, formes harmoniques.
    Hermann, Paris, 1955. MR 0346830 (49:11552)
  • 22. W. P. Thurston.
    The theory of foliations of codimension greater than one.
    Comment. Math. Helvetici, 49 (1974), 214-231. MR 0370619 (51:6846)
  • 23. W. P. Thurston.
    The Geometry and Topology of Three-Manifolds.
    Electronic version, 2002.
    http://www.msri.org/publications/books/gt3m/
  • 24. A. M. Vershik.
    A Theorem on Periodical Markov Approximation,
    in Ergodic Theory, Ergodic Theory and Related Topics (Vitte, 1981), Math. Res., 12, Akademie-Verlag, Berlin, 1981, 195-206. MR 730788 (85j:28026)
  • 25. A. Weil.
    Sur les théorèmes de de Rham,
    Comment. Math. Helvetici, 26 (1952), 119-145. MR 0050280 (14:307b)
  • 26. R. F. Williams.
    Expanding attractors.
    Publications Mathématiques de l'I.H.É.S., 43 (1974), 169-203. MR 0348794 (50:1289)
  • 27. J. H. C. Whitehead.
    On $ C^1$-complexes.
    Ann. of Math. (2), 41 (1940), 809-824. MR 0002545 (2:73d)
  • 28. H. Whitney.
    Geometric Integration Theory.
    Princeton University Press, Princeton, NJ, 1957. MR 0087148 (19:309c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57R05, 57R30

Retrieve articles in all journals with MSC (2010): 57R05, 57R30


Additional Information

Fernando Alcalde Cuesta
Affiliation: Department of Geometry and Topology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
Email: fernando.alcalde@usc.es

Álvaro Lozano Rojo
Affiliation: Department of Mathematics, University of the Basque Country, 48940 Leioa, Spain
Email: alvaro.lozano@ehu.es

Marta Macho Stadler
Affiliation: Department of Mathematics, University of the Basque Country, 48940 Leioa, Spain
Email: marta.macho@ehu.es

DOI: https://doi.org/10.1090/S0002-9939-2010-10665-2
Keywords: Lamination, triangulation, branched manifold, inverse limit.
Received by editor(s): February 25, 2010
Received by editor(s) in revised form: June 25, 2010
Published electronically: December 8, 2010
Additional Notes: This work was partially supported by MEC MTM2007-66262, UPV 00127.310-E-14790, EHU 06/05 and Xunta de Galicia INCITE07PXIE1R207053ES
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society