PRESERVATION OF THE RESIDUAL CLASSES NUMBERS
BY POLYNOMIALS

JEAN-LUC CHABERT AND YOUSSEF FARES

(Communicated by Matthew A. Papanikolas)

Abstract. Let \(K \) be a global field and let \(\mathcal{O}_{K,S} \) be the ring of \(S \)-integers of \(K \) for some finite set \(S \) of primes of \(K \). We prove that whatever the infinite subset \(E \subseteq \mathcal{O}_{K,S} \) and the polynomial \(f(X) \in K[X] \), the subsets \(E \) and \(f(E) \) have the same number of residual classes modulo \(m \) for almost all maximal ideals \(m \) of \(\mathcal{O}_{K,S} \) if and only if \(\deg(f) = 1 \) when the characteristic of \(K \) is 0 and \(f(X) = g(X^p^k) \) for some integer \(k \) and some polynomial \(g \) with \(\deg(g) = 1 \) when the characteristic of \(K \) is \(p > 0 \).

1. Introduction

In 1968, Davenport raised the following question: what can be said about \(f, g \in \mathbb{Z}[X] \) when, for almost all primes \(p \), \(f(\mathbb{Z}) \mod p = g(\mathbb{Z}) \mod p \), that is, if the set formed by the classes modulo \(p \) of the elements of \(f(\mathbb{Z}) \) is equal to the corresponding set for \(g(\mathbb{Z}) \) for all but finitely many prime numbers \(p \) (see [5, abstract])? We are interested here in an analogous question. But first let us recall some results about Davenport’s problem.

Proposition 1.1 ([3] and [5]). Let \(f, g \in \mathbb{Z}[X] \) be such that \(f(\mathbb{Z}) \mod p = g(\mathbb{Z}) \mod p \) for almost all primes \(p \). If \(f \) is not of the form \(l \circ m \circ n \) where \(l, m, n \in \mathbb{Z}[X] \) are of degree \(\geq 2 \), then \(f \) and \(g \) are linearly related.

Two polynomials \(f \) and \(g \) with coefficients in a field \(L \) are said to be linearly related when there exist \(a \in L^* \) and \(b \in L \) such that \(g(X) = f(aX + b) \). There are generalizations of this result:

Proposition 1.2 ([2]). Let \(K \) be a number field and let \(\mathcal{O}_K \) be its ring of integers. Let \(f, g \in \mathcal{O}_K[X] \) be such that \(f(\mathcal{O}_K) \mod m = g(\mathcal{O}_K) \mod m \) for almost all maximal ideals \(m \) of \(\mathcal{O}_K \). If \(f \) is indecomposable and if \(\deg(f) \neq 7, 11, 13, 15, 21, 31 \), then \(f \) and \(g \) are linearly related.

Moreover, for each of these exceptional degrees, there exist counterexamples. From now on, we write \(f.a.a. \) instead of ‘for almost all’. As a consequence of the previous proposition, we have:

Corollary 1.3. For every number field \(K \) and every polynomial \(f \in K[X] \), if \(\#(f(\mathcal{O}_K) \mod m) = \#(\mathcal{O}_K/m) \) f.a.a. \(m \in \text{Max}(\mathcal{O}_K) \), then \(\deg(f) = 1 \).
For a subset E of \mathcal{O}_K, $\#(E \mod m)$ denotes the cardinality of the set $E \mod m$ formed by the classes modulo m. This notation is extended to every subset E of K in the following way: $\#(E \mod m)$ denotes the cardinality of the set formed by the classes modulo $m(\mathcal{O}_K)_m$. Note that if the polynomial f belongs to $(\mathcal{O}_K)_m[X]$, then $f(\mathcal{O}_K) \mod m = \mathcal{O}_K \mod m$ is equivalent to $\#(f(\mathcal{O}_K) \mod m) = \#(\mathcal{O}_K \mod m)$.

On the other hand, it is well known that every global field K has the following property (see for instance [4] §X.11):

Proposition 1.4. Let K be a global field, let $f \in K[X]$, and let E be an infinite subset of \mathcal{O}_K. If $f(E) = E$, then $\deg(f) = 1$.

Along the lines of the last two results, we may be interested in the following generalized question:

Let K be a number field, let E be an infinite subset of the ring of integers \mathcal{O}_K of K, and let $f \in K[X]$. Does the condition $f(E) \mod m = E \mod m$ for almost all maximal ideals m of \mathcal{O}_K imply that $\deg(f) = 1$?

We are going to answer yes. In fact, we will consider global fields instead of number fields only, and we will use a weaker hypothesis by replacing the identity of the residue sets with the equality of their cardinalities. Note also that, in the case of a global field K, we will speak of primes of K, instead of maximal ideals of \mathcal{O}_K, in order to avoid any reference a priori to a ring of integers, especially for function fields. Our main result is the following (Theorems 3.3 and 4.4):

Theorem 1.5. Let K be a global field, let S be a finite set of primes of K, let E be an infinite subset of the ring $\mathcal{O}_{K,S}$ of S-integers of K, and let $f \in K[X]$. If $f' \neq 0$, then

\begin{equation}
(1) \quad \#(E \mod \mathcal{P}) = \#(f(E) \mod \mathcal{P}) \text{ f.a.a. primes } \mathcal{P} \text{ of } K \iff \deg(f) = 1.
\end{equation}

One implication of (1) is obvious. After some preliminary remarks (§2), we will prove the reverse implication, first for number fields (§3) and then for function fields (§4).

Remark 1.6. On the one hand, we weaken one of the hypotheses in Proposition 1.2 by replacing the whole domain \mathcal{O}_K with any infinite subset E of \mathcal{O}_K. On the other hand, we have to assume that the degree of one of the polynomials f and g is one. It seems difficult to obtain an assertion with two general polynomials f and g because of the following example which comes from [4]. Let $f \in \mathbb{Z}[X]$ which is not injective, for instance, such that $f(0) = f(1)$. Let $h \in \mathbb{Z}[X]$ such that $h(0) = 1$, for instance, $h(X) = X^2 + X + 1$. Let $g(X) = f(h(X))$ and $E = \{h^n(0) \mid n \geq 0\}$. Then $f(E) = g(E)$, while f may be irreducible with any degree.

2. Preliminary remarks

Notation. In this section D denotes an integral domain with quotient field L. Recall that, for every subset E of L and every maximal ideal m of D, $\#(E \mod m)$ denotes the cardinality of the set formed by the classes modulo mD_m of the elements of E. For every set \mathcal{M} of maximal ideals of D, if E and F are subsets of L,

\begin{equation}
(2) \quad E \equiv_{\mathcal{M}} F \quad \text{will mean} \quad \#(E \mod m) = \#(F \mod m) \quad \text{for all } m \in \mathcal{M}.
\end{equation}

We begin with two examples.
Examples 2.1. (a) Assume that D is semi-local (and $\neq L$). Let $E = J(D)$ be the Jacobson radical of D and let $f(X) = X^n$ where $n \geq 2$. Then $J(D) \equiv_{\text{Max}(D)} f(J(D))$, while $J(D)$ is infinite and $\deg(f) \geq 2$.

(b) Assume that D is not of finite character, that is, there exists a non-zero element $d \in D$ which belongs to infinitely many maximal ideals. Let $E = n$ where n is any fixed maximal ideal, let $f(X) = dX$, and let $M = \{m \in \text{Max}(D) \mid m \neq n$ and $d \in m\}$. Then $\deg(f) = 1$, while $n \neq \mathcal{M} f(n)$ because, for every $m \in \mathcal{M}$, $\#(n \mod m) \geq 2$ and $\#(f(n) \mod m) = 1$.

Thus, for our purpose, it is necessary to consider non-semi-local domains with finite character. The following assertions are obvious:

Lemma 2.2. Let E be a subset of D, let $f \in L[X]$, and let d be a non-zero element of D. If \mathcal{M} is a subset of $\text{Max}(D)$ such that $f \in D_m[X]$ for every $m \in \mathcal{M}$ and $N = \{m \in \mathcal{M} \mid d \not\in m\}$, then one has

\[(3) \quad E \equiv_{\mathcal{M}} f(E) \Rightarrow E \equiv_{\mathcal{N}} df(E)\]

and

\[(4) \quad E \equiv_{\mathcal{M}} f(E) \Rightarrow dE \equiv_{\mathcal{N}} g(dE)\]

where $dE = \{dx \mid x \in E\}$ and $g(X) = f(X/d)$.

Remarks 2.3. (i) Implication (3) shows that, when D is a domain with finite character, to prove that, for every $f \in K[X]$, we have the implication

\[\#(E \mod m) = \#(f(E) \mod m) \quad \text{f.a.a.} \quad m \in \text{Max}(D) \Rightarrow \deg(f) = 1,\]

it is enough to prove this implication for every $f \in D[X]$.

(ii) Let $E \subseteq D$, $f \in D[X]$, and $m \in \text{Max}(D)$ such that D/m is finite. Clearly,

\[\forall a, b \in D \quad [a - b \in m \Rightarrow f(a) - f(b) \in m],\]

and hence f induces a surjective map

\[f_m : E \mod m \rightarrow f(E) \mod m,\]

so that $\#(f(E) \mod m) = \#(E \mod m)$ means that f_m is injective; that is,

\[\forall a, b \in E \quad [a - b \notin m \Rightarrow f(a) - f(b) \notin m].\]

Lemma 2.4. If D is of finite character and \mathcal{M} is infinite, then

\[(5) \quad f(E) \equiv_{\mathcal{M}} E \Rightarrow f \text{ is injective on } E.\]

Proof. Let $a \neq b \in E$. Then the hypothesis on D implies that there exists a maximal ideal $m \in \mathcal{M}$ such that $a - b \notin m$ and hence, by Remark 2.3(ii), such that $f(a) - f(b) \notin m$. Consequently, $f(a) \neq f(b)$. \qed

Lemma 2.5. Assume that the characteristic of D is $p > 0$. For every subset E of D, every $m \in \text{Max}(D)$, and every $f \in D[X]$, letting $g(X) = f(X^p)$, we have

\[\#(E \mod m) = \#(f(E) \mod m) \Leftrightarrow \#(E \mod m) = \#(g(E) \mod m).\]

This is an obvious consequence of the fact that $a - b \in m \Leftrightarrow a^p - b^p \in m$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Corollary 2.6. Assume that the characteristic of D is $p > 0$. If, for all $f \in D[X]$ such that $f' \neq 0$, we have
\[
\#(E \mod m) = \#(f(E) \mod m) \text{ f.a.a. } m \in \text{Max}(D) \Rightarrow \deg(f) = 1,
\]
then, for all $f \in D[X]$, we have
\[
\#(E \mod m) = \#(f(E) \mod m) \text{ f.a.a. } m \in \text{Max}(D)
\Rightarrow f(X) = g(X^{nk}) \text{ for some } g \in D[X] \text{ with } \deg(g) = 1 \text{ and some } k \in \mathbb{N}.
\]

Notation. For every $f \in D[X]$, let
\[
\Phi_f(X,Y) = \frac{f(X) - f(Y)}{X - Y}.
\]
If $\deg(f) = n$, we may write
\[
\Phi_f(X,Y) = \sum_{k=1}^{n} (X - Y)^{k-1}f_k(Y) \text{ with } f_k \in D[X] \text{ and } f_1 = f'.
\]

Proposition 2.7. Let $E \subseteq D$, $f \in D[X]$, and $m \in \text{Max}(D)$. Assume that \#$(f(E) \mod m) = \#(E \mod m)$. Then
\[
\forall a,b \in E, a \neq b \quad [\Phi_f(a,b) \in m \Rightarrow f'(a) \in m \text{ and } f'(b) \in m].
\]

Proof. If $\Phi_f(a,b) \in m$, then $f(a) - f(b) \in m$. The hypothesis implies that $a - b \in m$ (see Remark (ii)). It follows then from the equality
\[
\Phi_f(a,b) = f'(b) + (a - b)f_2(b) + \ldots + (a - b)^{n-1}f_n(b)
\]
that $f'(b) \in m$. \hfill \Box

3. Number fields

Notation. Let K be a global field, that is, a finite extension either of the rational number field \mathbb{Q} or of a rational function field $F(t)$ over the finite field \mathbb{F}_p.

Let S be a finite set of primes of K and denote by $\mathcal{O}_{K,S}$ the ring of S-integers of K, that is,
\[
\mathcal{O}_{K,S} = \bigcap_{P \notin S} \{ x \in K \mid v_P(x) \geq 0 \}
\]
where P denotes any prime of K and v_P the corresponding valuation.

Obviously, the fact that two subsets E and F of $\mathcal{O}_{K,S}$ satisfy
\[
\#(E \mod m) = \#(F \mod m) \text{ f.a.a. } m \in \text{Max}(\mathcal{O}_{K,S})
\]
does not depend on the choice of the finite set S, so that we are led to introduce the notation $E \equiv_K F$:
\[
E \equiv_K F \text{ means } \#(E \mod P) = \#(F \mod P) \text{ f.a.a. primes } P \text{ of } K.
\]
Moreover, if $E \equiv_K F$, then, for any finite extension L of K, we also have $E \equiv_L F$. Thus, we may use the following notation.

Notation. $E \equiv F$ will mean that there exists a global field K and a finite set S of primes of K such that $E, F \subseteq \mathcal{O}_{K,S}$ and, for almost all maximal ideals m of $\mathcal{O}_{K,S}$, the sets E and F have the same number of classes modulo m (this last assertion does not depend on the choices for K and S).
Now we consider the case of number fields. In order to prove our theorem for the ring of integers of a number field, we first recall some results on δ-rings [1].

Definition 3.1. An integral domain \(D \) with quotient field \(L \) is said to be a δ-ring if, for every infinite subset \(F \) of \(D \), any rational function \(\varphi \in L(X) \) such that \(\varphi(F) \subseteq D \) admits at most one pole.

Clearly, if \(D \) is a δ-ring, all such rational functions which admit one pole do have the same pole \(e \). Moreover, if a polynomial \(g \in L[X] \) and an infinite subset \(F \subseteq D \) are such that \(g(F) \subseteq U(D) \) where \(U(D) \) denotes the group of units of \(D \), then \(g \) is of the form \(\lambda(X - e)^n \) where \(\lambda, e \in L \) and \(e \) is the previous unique pole.

Proposition 3.2 ([1 Corollary 18]). For every number field \(K \) and every finite set \(S \) of maximal ideals of \(\mathcal{O}_K \), the ring \(\mathcal{O}_{K,S} \) of \(S \)-integers of \(K \) is a δ-ring.

Note that if some rational function \(\varphi \in K(X) \) such that \(\varphi(F) \subseteq \mathcal{O}_{K,S} \) for some infinite subset \(F \) of \(\mathcal{O}_{K,S} \) admits a pole \(e \), then \(e \) does not depend on \(\varphi \) nor on \(F \).

Theorem 3.3. Let \(K \) be a number field and let \(S \) be a finite set of maximal ideals of \(K \). Let \(E \) be an infinite subset of the ring \(\mathcal{O}_{K,S} \) of \(S \)-integers of \(K \) and let \(f \in K[X] \). Then,

\[
(11) \quad f(E) \equiv E \Rightarrow \deg(f) = 1.
\]

Proof. By Remark 2.3, we may assume that \(f \in \mathcal{O}_{K,S}[X] \). Let \(E_1 = \{ a \in E \mid f'(a) \neq 0 \} \). Since the characteristic of \(K \) is 0, \(E_1 \) is infinite. Fix an element \(a \) in \(E_1 \) and let \(T = S \cup \{ m \in \max(\mathcal{O}_K) \mid f'(a) \in m\mathcal{O}_{K,S} \} \). By Proposition 2.7, for every \(x \in E_1 \setminus \{ a \} \), \(\Phi_f(a, x) \notin m \) when \(m \notin T \), that is, \(\Phi_f(a, x) \in \mathcal{O}_{K,T}^\times \). Since, by Proposition 3.2 \(\mathcal{O}_{K,T} \) is a δ-ring, it follows from the containment \(\Phi_f(a, E_1 \setminus \{ a \}) \subseteq \mathcal{O}_{K,T}^\times \) that the polynomial \(\Phi_f(a, X) \) of the form \(\lambda(X - e)^n \) where \(\lambda \) denotes the leading coefficient of \(f \) and \(n \) denotes its degree.

If we consider now another element \(b \in E_1 \), analogously we have \(\Phi_f(b, X) = \lambda(X - e)^n \) with the same \(\lambda \) and the same \(e \). Consequently, \(\deg_X(\Phi_f) = \deg_Y(\Phi_f) = 0 \) and \(n = 1 \). \(\square \)

4. Function fields

Now \(K \) denotes a function field with characteristic \(p \) and \(S \) denotes a finite set of primes of \(K \). Denote by \(\mathcal{O}_{K,S} \) the ring of \(S \)-integers of \(K \). The previous proof does not work, but since the group of units \(\mathcal{O}_{K,S}^\times \) is finitely generated [2][Prop. 14.2], we may use for our proof a special case of Voloch’s following result with \(G = \mathcal{O}_{K,S}^\times \times \mathcal{O}_{K,S}^\times \):

Proposition 4.1 ([8 Theorem 2]). If \(L \) is a field of characteristic \(p > 0 \) finitely generated over its prime field and \(G \) is a subgroup of \(L^* \times L^* \) such that \(\dim_\mathbb{Q} G \otimes \mathbb{Q} \) is finite, then the equation \(ax + by = 1 \) has at most finitely many solutions \((x, y) \in G \) unless \((a, b)^n \in G \) for some \(n \geq 1 \).

Lemma 4.2. Let \(K \) be a function field and let \(S \) be a finite set of primes of \(K \). Let \(E \) be an infinite subset of \(\mathcal{O}_{K,S} \), let \(f \in \mathcal{O}_{K,S} \) with degree \(n \geq 2 \), and let \(M \) be an infinite subset of \(\text{Max}(\mathcal{O}_{K,S}) \). If \(f(E) \equiv M \), then

\[
\forall m \in M \forall a, b \in E | a - b \neq 0 \text{ and } a - b \in m \Rightarrow f'(a) \in m \text{ and } f'(b) \in m.
\]
Proof. Fix $a \neq b$ in E. Note first that if $a - b \in \mathfrak{m}$, then $f'(a) \in \mathfrak{m}$ is equivalent to $f'(b) \in \mathfrak{m}$, because of the equalities

\begin{align*}
(12) & \quad \Phi_f(a, b) = f'(a) + (b - a)f_2(a) + \ldots + (b - a)^{n-1}f_n(a), \\
(13) & \quad \Phi_f(a, b) = f'(b) + (a - b)f_2(b) + \ldots + (a - b)^{n-1}f_n(b).
\end{align*}

Thus, it is enough to show that $f'(a)f'(b) \in \mathfrak{m}$, and, to do this, we may assume that $f'(a)f'(b) \neq 0$.

By considering a decomposition field L of $\Phi_f(a, X)\Phi_f(b, X)$, we may write

\begin{align*}
\Phi_f(a, X) = \prod_{i=1}^{n-1} (X - a_i) & \quad \text{and} \quad \Phi_f(b, X) = \prod_{j=1}^{n-1} (X - b_j).
\end{align*}

Clearly, for all i, j, $\Phi_f(a, a_i) = \Phi_f(b, b_j) = 0$, and hence $f(a_i) = f(a)$ and $f(b) = f(b_j)$. By Lemma 2.4, f is injective on E and $a_i \neq b_j$ for all i, j.

Let $T = S \cup \{n \in \text{Max}(\mathcal{O}_{K, S}) | f'(a)f'(b) \in \mathfrak{n}\}$. The set T is finite because of our assumption that $f'(a)f'(b) \neq 0$. Then, by Proposition 2.7, for every $\mathfrak{m} \notin T$, we have: for every $x \in E \setminus \{a\}$, $\Phi_f(a, x) \notin \mathfrak{m}$; and for every $x \in E \setminus \{b\}$, $\Phi_f(b, x) \notin \mathfrak{m}$.

Let W be the set of primes of L dividing the primes of K which are in T. Then, for every $x \in E \setminus \{a\}$, the $x - a_i$’s are W-units; and for every $x \in E \setminus \{b\}$, the $x - b_j$’s are W-units, so that, for every i, j, the equation

$$b_j - a_i X + b_j - a_i Y = 1$$

admits infinitely many solutions $(x, y) \in \left(\mathcal{O}_{L, W}^\times\right)^2$, namely $(x - a_i, b_j - x)$ for $x \in E \setminus \{a, b\}$. It follows from Proposition 4.1 that for all i, j, $a_i - b_j \in \mathcal{O}_{L, W}^\times$.

For a fixed i, we have

$$\Phi_f(a_i, b) = \frac{f(a_i) - f(b)}{a_i - b} = \prod_{j=1}^{n-1} (a_i - b_j).$$

Consequently, $f(a_i) - f(b)$ is also a W-unit. Since $\deg(f) \geq 2$, there is at least one a_i, and hence $f(a) = f(a_i)$ implies that $f(a) - f(b)$ is a T-unit.

Assuming now that $a - b \in \mathfrak{m}$, we also have $f(a) - f(b) \in \mathfrak{m}$. Necessarily, $\mathfrak{m} \in T$; that is, $f'(a)f'(b) \in \mathfrak{m}$. \hfill \Box

Proposition 4.3. Let K be a function field, let S be a finite set of primes of K, let E be an infinite subset of $\mathcal{O}_{K, S}$, and let $f \in K[X]$. If there exists some element $a \in E$ such that $f'(a) \neq 0$ and such that, for infinitely many $\mathfrak{m} \in \text{Max}(\mathcal{O}_{K, S})$, there exists an element $b_\mathfrak{m} \in E$ with $a - b_\mathfrak{m} \in \mathfrak{m}$, then $\deg(f) = 1$.

Proof. Assume that $\deg(f) \geq 2$. Then it follows from the previous lemma that $f'(a) \in \mathfrak{m}$ for infinitely many $\mathfrak{m} \in \text{Max}(\mathcal{O}_{K, S})$. Thus, $f'(a) = 0$. This is a contradiction. \hfill \Box

Theorem 4.4. Let K be a function field with characteristic $p > 0$ and let S be a finite set of primes of K. For every infinite subset E of $\mathcal{O}_{K, S}$ and every $f \in K[X]$, one has

$$f(E) \equiv_K E \Rightarrow f(X) = g(X^{p^k}) \text{ where } k \in \mathbb{N} \text{ and } \deg(g) = 1.$$
Proof. Let $D = \mathcal{O}_{K,S}$. It follows from Lemma 2.3 that we may assume that $f' \neq 0$. It is then enough to prove that every infinite subset E of D has an element a which satisfies the property given in Proposition 4.3. Assume that there exists a subset E which does not have such an element a. Replacing E by $E \setminus \{a | f'(a) = 0\}$, we have

$$\forall a \in E \exists m_1, \ldots, m_s \forall m \in \text{Max}(D) \setminus \{m_1, \ldots, m_s\} \forall x \in E \setminus \{a\} x - a \notin m.$$

Fix two distinct elements a and b in E. It follows from the hypothesis on E that there exists a finite subset T of Max(D) such that for every $m \in \text{Max}(D) \setminus T$ and every $x \in E \setminus \{a, b\}$, $x - a$ and $x - b$ do not belong to m. Since we are looking for a contradiction, we may replace D with the ring D_T and assume that

$$\forall x \in E \setminus \{a, b\} (x - a)(x - b) \in U(D),$$

where $U(D)$ denotes the group of units of D (in fact the group of $S \cup T$-units of K).

For each $x \in E \setminus \{a, b\}$, let $X = \frac{x - a}{b - a}$ and $X^* = \frac{b - x}{a - b}$. Then $X, X^* \in U(D)$ and $X + X^* = 1$. Furthermore, the hypothesis on E implies that there are infinitely many such pairs. But we know (see for instance [7] Thm. 7.19) that there are only finitely many pairs of separable non-constant units (U, U^*) of D such that $U + U^* = 1$ and that all the solutions of $Y + Y^* = 1$ in non-constant units are of the form (U^{p^m}, U^{*p^m}) where $m \geq 0$. Consequently, there exists at least one pair (U_0, U_0^*) of separable units such that $U_0 + U_0^* = 1$ and such that, for infinitely many $m \geq 0$, $(U_0^{p^m}, U_0^{*p^m})$ is some of the previous pairs (X, X^*). Thus we may consider a strictly increasing sequence of integers $\{m_k\}_{k \geq 0}$ such that

$$U_0^{p^m_k} = X_{m_k} = \frac{x_{m_k} - a}{b - a} \text{ with } x_{m_k} \in E.$$

Let $q = p^f$ be the cardinality of the constant field of K. From the infinite sequence $\{m_k\}_{k \geq 0}$, we may extract another infinite strictly increasing sequence $\{t_k\}_{k \geq 0}$ such that $t_k \equiv t_0 \text{ (mod } f)$. Let us write $t_k = t_0 + kr_k$. Then

$$X_{t_k} = U_0^{p_{r_k}} = U_0^{p_{r_k} \times q_{r_k}} = X_{t_0}^{p^{r_k}}.$$

We also know (see for instance [7] Thm. 5.12) that there exists t_0 such that for every $l \geq t_0$, the function field K has at least one maximal ideal m_l with norm q^l. Finally, for k large enough, we have

$$X_{t_k} - X_{t_0} = X_{t_0}^{p^{r_k}} - X_{t_0} \in m_{r_k}.$$

Equivalently, for k large enough, $x_{t_k} - x_{t_0} \in m_{r_k}$. Thus, the element $x_{t_0} \in E$ leads to a contradiction to the assumption on E. \hfill \Box

ACKNOWLEDGMENT

The authors thank David Adam for his advice about function fields.

REFERENCES

DÉPARTEMENT DE MATHEMATIQUES, LAMFA CNRS-UMR 6140, UNIVERSITÉ DE PICARDIE, 80039 AMIENS, FRANCE
E-mail address: jean-luc.chabert@u-picardie.fr

DÉPARTEMENT DE MATHEMATIQUES, LAMFA CNRS-UMR 6140, UNIVERSITÉ DE PICARDIE, 80039 AMIENS, FRANCE
E-mail address: youssef.fares@u-picardie.fr