Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Concave unimodal maps have no majorisation relations between their ergodic measures


Author: Jacob Steel
Journal: Proc. Amer. Math. Soc. 139 (2011), 2553-2558
MSC (2010): Primary 37E05; Secondary 37C40
DOI: https://doi.org/10.1090/S0002-9939-2010-10705-0
Published electronically: December 30, 2010
MathSciNet review: 2784820
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ T$ is a concave unimodal map on the unit interval $ [0,1]$ and $ \{x:T^{n}(x) = 1$    for some $ n\}$ is dense in $ [0,1]$, we prove that all $ T$-invariant ergodic Borel probability measures are mutually incomparable with respect to the partial order of majorisation. This contrasts sharply with the situation for other interval maps previously studied.


References [Enhancements On Off] (What's this?)

  • 1. T. Bousch, Le poisson n'a pas d'arêtes, Ann. Inst. Henri Poincaré (Proba. et Stat.), 36 (2000), 489-508. MR 1785392 (2001i:37005)
  • 2. S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots and the devil's staircase, Math. Proc. Camb. Phil. Soc., 115 (1994), 451-481. MR 1269932 (95j:58043)
  • 3. K.-C. Chen and X. Dong, On the barycenter of the tent map, Proc. Amer. Math. Soc., 138 (2010), 4025-4035.
  • 4. O. Jenkinson, Ergodic Optimization, Discr. & Cont. Dyn. Sys., 15 (2006), 197-224. MR 2191393 (2009i:37075)
  • 5. O. Jenkinson, Optimization and majorization of invariant measures, Elec. Res. Ann. Amer. Math. Soc., 13 (2007), 1-12. MR 2285761 (2007m:37006)
  • 6. O. Jenkinson, A partial order on $ \times 2$-invariant measures, Math. Res. Lett., 15 (2008), 893-900. MR 2443990 (2010h:37005)
  • 7. O. Jenkinson, Balanced words and majorization, Discr. Math. Alg. & Appl., 1 (2009), 485-498.
  • 8. O. Jenkinson and J. Steel, Majorization of invariant measures for orientation-reversing maps, Ergod. Th. & Dyn. Sys., 30 (2010), 1471-1483.
  • 9. M. Misiurewicz, Rotation theory, Proceedings RIMS Workshop on Dynamical Systems and Applications, 2006 (http://www.math.kyoto-u.ac.jp/$ \sim$kokubu/RIMS2006/proc.html).
  • 10. J. Steel, Barycentres and majorisation for invariant measures of the shifted doubling map, preprint, 2010.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E05, 37C40

Retrieve articles in all journals with MSC (2010): 37E05, 37C40


Additional Information

Jacob Steel
Affiliation: School of Mathematics, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

DOI: https://doi.org/10.1090/S0002-9939-2010-10705-0
Received by editor(s): March 18, 2010
Received by editor(s) in revised form: June 4, 2010, and July 12, 2010
Published electronically: December 30, 2010
Communicated by: Bryna Kra
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society