Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On injective von Neumann algebras


Author: G. Racher
Journal: Proc. Amer. Math. Soc. 139 (2011), 2529-2541
MSC (2010): Primary 46L10, 46L05, 46M10
DOI: https://doi.org/10.1090/S0002-9939-2010-10793-1
Published electronically: December 21, 2010
MathSciNet review: 2784818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Partially answering a question of A.Ya. Helemskii, we show that a von Neumann algebra is injective if and only if all its normal dual Banach left modules are $ 1$-injective in the sense of the homology of Banach algebras. Nuclear $ C^*$-algebras are characterized in a similar manner.


References [Enhancements On Off] (What's this?)

  • 1. C.A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286-302. MR 0206732 (34:6549)
  • 2. J.W. Bunce and W.L. Paschke, Quasi-expectations and amenable von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 232-236. MR 0482252 (58:2330)
  • 3. M.D. Choi and E.G. Effros, Nuclear $ C^*$-algebras and injectivity: the general case, Indiana Univ. Math. Jour. 26 (1977), 443-446. MR 0430794 (55:3799)
  • 4. E. Christensen and A.M. Sinclair, On von Neumann algebras which are complemented subspaces of $ B(H)$, J. Funct. Anal. 122 (1994), 91-102. MR 1274585 (95f:46101)
  • 5. E. Christensen and A.M. Sinclair, Module mappings into von Neumann algebras and injectivity, Proc. London Math. Soc. (3) 71 (1995), 618-640. MR 1347407 (96m:46107)
  • 6. A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253. MR 0493383 (58:12407)
  • 7. H.G. Dales and M.E. Polyakov, Homological properties of modules over group algebras, Proc. London Math. Soc. (3) 89 (2004), 390-426. MR 2078704 (2005e:46085)
  • 8. E.G. Effros, Amenability and virtual diagonals for von Neumann algebras, J. Funct. Anal. 78 (1988), 137-153. MR 937636 (89e:46072)
  • 9. U. Haagerup, All nuclear $ C^*$-algebras are amenable, Invent. Math. 74 (1983), 305-319. MR 723220 (85g:46074)
  • 10. A.Ya. Helemskii, The homology of Banach and topological algebras, Izdat. Moskow. Gos. Univ., Moscow (1986); English transl., Kluwer, Dordrecht (1989). MR 1093462 (92d:46178)
  • 11. A.Ya. Helemskii, The homological essence of Connes amenability: Injectivity of the predual bimodule, Matem. Sbornik 180 (1989), 1680-1690 (Russian); Math. USSR Sbornik 68 (1991), 555-566 (English). MR 1038222 (91f:46102)
  • 12. A.Ya. Helemskii, The spatial flatness and injectiveness of Connes operator algebras, Extracta Math. 9 (1994), 75-81. MR 1304157 (95i:46103)
  • 13. A.Ya. Helemskii, Some aspects of topological homology since 1995: a survey, Contemp. Math., 363, Amer. Math. Soc., Providence, RI, 2004, 145-179. MR 2097957 (2005i:46079)
  • 14. B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). MR 0374934 (51:11130)
  • 15. B.E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685-698. MR 0317050 (47:5598)
  • 16. B.E. Johnson, R.V. Kadison and J.R. Ringrose, Cohomology of operator algebras. III. Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73-96. MR 0318908 (47:7454)
  • 17. V.I. Paulsen, Relative Yoneda cohomology for operator spaces, J. Funct. Anal. 157 (1998), 358-393. MR 1638320 (99j:46067)
  • 18. G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996). MR 1342022 (97a:46024)
  • 19. G. Racher, On the projectivity and flatness of some group modules, Banach Center Publications 91 (2010).
  • 20. M. Takesaki, Theory of operator algebras. I, Springer-Verlag, New York, 1979. MR 548728 (81e:46038)
  • 21. M. Takesaki, Theory of operator algebras. III, Springer-Verlag, Berlin, 2003. MR 1943007 (2004g:46080)
  • 22. M.C. White, Injective modules for uniform algebras, Proc. London Math. Soc. (3) 73 (1996), 155-184. MR 1387086 (97e:46068)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L10, 46L05, 46M10

Retrieve articles in all journals with MSC (2010): 46L10, 46L05, 46M10


Additional Information

G. Racher
Affiliation: Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
Email: gerhard.racher@sbg.ac.at

DOI: https://doi.org/10.1090/S0002-9939-2010-10793-1
Keywords: Injective von Neumann algebras, nuclear $C^{*}$-algebras, injective Banach modules.
Received by editor(s): November 13, 2009
Received by editor(s) in revised form: July 9, 2010
Published electronically: December 21, 2010
Communicated by: Marius Junge
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society