On the asymptotic behavior of weakly lacunary series
Authors:
C. Aistleitner, I. Berkes and R. Tichy
Journal:
Proc. Amer. Math. Soc. 139 (2011), 25052517
MSC (2010):
Primary 42A55, 42A61, 11D04, 60F05, 60F15
Published electronically:
February 9, 2011
MathSciNet review:
2784816
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a measurable function satisfying and let be a sequence of integers satisfying . By the classical theory of lacunary series, under suitable Diophantine conditions on , satisfies the central limit theorem and the law of the iterated logarithm. These results extend for a class of subexponentially growing sequences as well, but as Fukuyama showed, the behavior of is generally not permutationinvariant; e.g. a rearrangement of the sequence can ruin the CLT and LIL. In this paper we construct an infinite order Diophantine condition implying the permutationinvariant CLT and LIL without any growth conditions on and show that the known finite order Diophantine conditions in the theory do not imply permutationinvariance even if and grows almost exponentially. Finally, we prove that in a suitable statistical sense, for almost all sequences growing faster than polynomially, has permutationinvariant behavior.
 1.
Christoph
Aistleitner and István
Berkes, On the central limit theorem for
𝑓(𝑛_{𝑘}𝑥), Probab. Theory Related
Fields 146 (2010), no. 12, 267–289. MR 2550364
(2010i:42015), http://dx.doi.org/10.1007/s0044000801906
 2.
C. Aistleitner, I. Berkes and R. Tichy, On permutations of HardyLittlewoodPólya sequences. Transactions of the AMS, to appear.
 3.
C. Aistleitner, I. Berkes and R.F. Tichy, Lacunarity, symmetry and Diophantine equations. Preprint.
 4.
I.
Berkes, NonGaussian limit distributions of lacunary trigonometric
series, Canad. J. Math. 43 (1991), no. 5,
948–959. MR 1138574
(92k:60108), http://dx.doi.org/10.4153/CJM19910520
 5.
I.
Berkes and W.
Philipp, An a.s. invariance principle for lacunary series
𝑓(𝑛_{𝑘}𝑥), Acta Math. Acad. Sci.
Hungar. 34 (1979), no. 12, 141–155. MR 546729
(80i:60042), http://dx.doi.org/10.1007/BF01902603
 6.
István
Berkes and Walter
Philipp, The size of trigonometric and Walsh series and uniform
distribution 𝑚𝑜𝑑1, J. London Math. Soc. (2)
50 (1994), no. 3, 454–464. MR 1299450
(96e:11099), http://dx.doi.org/10.1112/jlms/50.3.454
 7.
István
Berkes, Walter
Philipp, and Robert
F. Tichy, Empirical processes in probabilistic number theory: the
LIL for the discrepancy of (𝑛_{𝑘}𝜔)\bmod1,
Illinois J. Math. 50 (2006), no. 14, 107–145.
MR
2247826 (2008a:60064)
 8.
P.
Erdős, On trigonometric sums with gaps, Magyar Tud.
Akad. Mat. Kutató Int. Közl 7 (1962),
37–42 (English, with Russian summary). MR 0145264
(26 #2797)
 9.
K.
Fukuyama, The law of the iterated logarithm for the discrepancies
of a permutation of {𝑛_{𝑘}𝑥}, Acta Math.
Hungar. 123 (2009), no. 12, 121–125. MR 2496484
(2010c:11093), http://dx.doi.org/10.1007/s1047400880679
 10.
I.
S. Gál, A theorem concerning Diophantine
approximations, Nieuw Arch. Wiskunde (2) 23 (1949),
13–38. MR
0027788 (10,355a)
 11.
V.
F. Gapoškin, Lacunary series and independent functions,
Uspehi Mat. Nauk 21 (1966), no. 6 (132), 3–82
(Russian). MR
0206556 (34 #6374)
 12.
V. F. Gaposhkin, The central limit theorem for some weakly dependent sequences. Theory Probab. Appl. 15 (1970), 649666.
 13.
Shinichi
Izumi, Notes on Fourier analysis. XLIV. On the law of the iterated
logarithm of some sequences of functions, J. Math. Tokyo
1 (1951), 1–22. MR 0051962
(14,553e)
 14.
M.
Kac, On the distribution of values of sums of the type
∑𝑓(2^{𝑘}𝑡), Ann. of Math. (2)
47 (1946), 33–49. MR 0015548
(7,436f)
 15.
M.
Kac, Probability methods in some problems
of analysis and number theory, Bull. Amer.
Math. Soc. 55
(1949), 641–665. MR 0031504
(11,161b), http://dx.doi.org/10.1090/S00029904194909242X
 16.
J.
F. Koksma, On a certain integral in the theory of uniform
distribution, Nederl. Akad. Wetensch., Proc. Ser. A. 54 = Indagationes
Math. 13 (1951), 285–287. MR 0045165
(13,539b)
 17.
Gisiro
Maruyama, On an asymptotic property of a gap sequence,
Kōdai Math. Sem. Rep. 2 (1950), 31–32.
{Volume numbers not printed on issues until Vol. 7 (1955).}. MR 0038470
(12,406e)
 18.
Shigeru
Takahashi, On lacunary trigonometric series, Proc. Japan Acad.
41 (1965), 503–506. MR 0196377
(33 #4564)
 19.
Shigeru
Takahashi, On the law of the iterated logarithm for lacunary
trigonometric series, Tôhoku Math. J. (2) 24
(1972), 319–329. Collection of articles dedicated to Genichir\cflex
o Sunouchi on his sixtieth birthday. MR 0330905
(48 #9242)
 20.
A.
Zygmund, Trigonometric series. Vol. I, II, 3rd ed., Cambridge
Mathematical Library, Cambridge University Press, Cambridge, 2002. With a
foreword by Robert A. Fefferman. MR 1963498
(2004h:01041)
 1.
 C. Aistleitner and I. Berkes, On the central limit theorem for . Prob. Theory Rel. Fields 146 (2010), 267289. MR 2550364 (2010i:42015)
 2.
 C. Aistleitner, I. Berkes and R. Tichy, On permutations of HardyLittlewoodPólya sequences. Transactions of the AMS, to appear.
 3.
 C. Aistleitner, I. Berkes and R.F. Tichy, Lacunarity, symmetry and Diophantine equations. Preprint.
 4.
 I. Berkes, NonGaussian limit distributions of lacunary trigonometric series. Canad. J. Math. 43 (1991), 948959. MR 1138574 (92k:60108)
 5.
 I. Berkes and W. Philipp, An a.s. invariance principle for lacunary series . Acta Math. Acad. Sci. Hung. 34 (1979), 141155. MR 546729 (80i:60042)
 6.
 I. Berkes and W. Philipp, The size of trigonometric and Walsh series and uniform distribution mod 1. J. Lond. Math. Soc. 50 (1994), 454464. MR 1299450 (96e:11099)
 7.
 I. Berkes, W. Philipp and R.F. Tichy, Empirical processes in probabilistic number theory: the LIL for the discrepancy of mod 1. Illinois J. Math. 50 (2006), 107145. MR 2247826 (2008a:60064)
 8.
 P. Erdős, On trigonometric sums with gaps. Magyar Tud. Akad. Mat. Kut. Int. Közl. 7 (1962), 3742. MR 0145264 (26:2797)
 9.
 K. Fukuyama, The law of the iterated logarithm for the discrepancies of a permutation of . Acta Math. Hungar. 123 (2009), 121125. MR 2496484 (2010c:11093)
 10.
 I.S. Gál, A theorem concerning Diophantine approximations. Nieuw. Arch. Wiskunde (2) 23 (1949), 1338. MR 0027788 (10:355a)
 11.
 V. F. Gaposhkin, Lacunary series and independent functions. Russian Math. Surveys 21/6 (1966), 382. MR 0206556 (34:6374)
 12.
 V. F. Gaposhkin, The central limit theorem for some weakly dependent sequences. Theory Probab. Appl. 15 (1970), 649666.
 13.
 S. Izumi, Notes on Fourier analysis. XLIV. On the law of the iterated logarithm of some sequences of functions. J. Math. (Tokyo) 1 (1951), 122. MR 0051962 (14:553e)
 14.
 M. Kac, On the distribution of values of sums of the type . Ann. of Math. (2) 47 (1946), 3349. MR 0015548 (7:436f)
 15.
 M. Kac, Probability methods in some problems of analysis and number theory. Bull. Amer. Math. Soc. 55 (1949), 641665. MR 0031504 (11:161b)
 16.
 J.F. Koksma, On a certain integral in the theory of uniform distribution. Indagationes Math. 13 (1951), 285287. MR 0045165 (13:539b)
 17.
 G. Maruyama, On an asymptotic property of a gap sequence. Kôdai Math. Sem. Rep. 2 (1950), 3132. MR 0038470 (12:406e)
 18.
 S. Takahashi, On lacunary trigonometric series, Proc. Japan Acad. 41 (1965), 503506. MR 0196377 (33:4564)
 19.
 S. Takahashi, On the law of the iterated logarithm for lacunary trigonometric series, Tôhoku Math. J. 24 (1972), 319329. MR 0330905 (48:9242)
 20.
 A. Zygmund, Trigonometric Series, Vols. I, II, Third Edition. Cambridge Mathematical Library. Cambridge University Press, 2002. MR 1963498 (2004h:01041)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
42A55,
42A61,
11D04,
60F05,
60F15
Retrieve articles in all journals
with MSC (2010):
42A55,
42A61,
11D04,
60F05,
60F15
Additional Information
C. Aistleitner
Affiliation:
Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
Email:
aistleitner@math.tugraz.at
I. Berkes
Affiliation:
Institute of Statistics, Graz University of Technology, Münzgrabenstraße 11, 8010 Graz, Austria
Email:
berkes@tugraz.at
R. Tichy
Affiliation:
Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria
Email:
tichy@tugraz.at
DOI:
http://dx.doi.org/10.1090/S000299392011106828
PII:
S 00029939(2011)106828
Keywords:
Lacunary series,
central limit theorem,
law of the iterated logarithm,
permutationinvariance,
Diophantine equations
Received by editor(s):
May 16, 2010
Received by editor(s) in revised form:
July 4, 2010
Published electronically:
February 9, 2011
Additional Notes:
The first author’s research was supported by FWF grant S9603N23.
The second author’s research was supported by FWF grant S9603N23 and OTKA grants K 67961 and K 81928.
The third author’s research was supported by FWF grant S9603N23.
Communicated by:
Richard C. Bradley
Article copyright:
© Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
