A GENERALIZED POINCARÉ INEQUALITY FOR A CLASS OF CONSTANT COEFFICIENT DIFFERENTIAL OPERATORS

DEREK GUSTAFSON

(Communicated by Matthew J. Gursky)

Abstract. We study first order differential operators $P = \mathcal{P}(D)$ with constant coefficients. The main question is under what conditions the following full gradient L^p estimate holds:

$$\|D(f - f_0)\|_{L^p} \leq C\|Pf\|_{L^p}, \text{ for some } f_0 \in \ker P.$$

We show that the constant rank condition is sufficient. The concept of the Moore-Penrose generalized inverse of a matrix comes into play.

1. Introduction

The aim of this paper is to investigate a class of generalized Poincaré inequalities. We begin by recalling the classical Poincaré Inequality.

Theorem 1.1. For each $f \in \mathcal{D}'(\mathbb{R}^n)$ such that $\nabla f \in L^p(\mathbb{R}^n)$ and each ball $B = B(x_0, r) \subset \mathbb{R}^n$, there exists a constant f_B such that

$$\int_B |f - f_B|^p \leq C(n, p)r^p \int_B |\nabla f|^p.$$

We view f_B as an element in $\mathcal{D}'(\mathbb{R}^n)$ with $\nabla f_B = 0$, that is, $f_B \in \ker \nabla$.

Our investigation of ways to generalize this to other differential operators ended up relying on full gradient estimates. This leads to our main question:

Question 1.2. For what homogeneous first order partial differential operators $\mathcal{P} = \sum_{i=1}^n A_i \frac{\partial}{\partial x_i}$ is it true that for every $f \in \mathcal{D}'(\mathbb{R}^n, \mathbb{U})$ such that $\mathcal{P}f \in L^p(\mathbb{R}^n, \mathbb{V})$, there exists $f_0 \in \mathcal{D}'(\mathbb{R}^n, \mathbb{U})$ such that $\mathcal{P}f_0 = 0$ and

$$\sum_{i=1}^n \left\| \frac{\partial}{\partial x_i} (f - f_0) \right\|_p \leq C_p(\mathcal{P}) \|\mathcal{P}f\|_p.$$

Notice that with the change from ∇ to \mathcal{P} we also had to change some other details. First, there is no need for the ball that appears in the classical Poincaré inequality; our methods have been able to achieve global estimates. These are based on Calderón-Zygmund estimates while the classical Poincaré inequality is based on the fundamental theorem of calculus. Our estimates are on the first order partial
derivatives of \(f \), not \(f \) itself. The local \(L^p \) estimates of \(f - f_0 \) will follow from (1.1) by the usual Poincaré inequality. We will confine our investigations to the case where \(\mathcal{P} \) has constant coefficients.

In section 2 we review elliptic complexes and provide a previously known result, see [4] for example, that derives a generalized Poincaré inequality using elliptic complexes. In section 3 we review the notion of a generalized inverse of a matrix, and use this to prove a new generalized Poincaré inequality. In section 4 we prove a structure theorem for elliptic complexes that allows us to see the relationship between these two generalized Poincaré inequalities. This paper is based upon results contained in the author’s dissertation [6].

2. Elliptic complexes

Let \(U, V, \) and \(W \) be finite dimensional inner product spaces, whose inner products are denoted by \(\langle \, , \rangle_U \), \(\langle \, , \rangle_V \), and \(\langle \, , \rangle_W \), respectively, or just \(\langle \, , \rangle \) when the space is clear. Let \(\mathcal{P} \) and \(\mathcal{Q} \) be the first order differential operators with constant coefficients

\[
\mathcal{P} = \sum_{i=1}^{n} A_i \frac{\partial}{\partial x_i}, \quad \mathcal{Q} = \sum_{i=1}^{n} B_i \frac{\partial}{\partial x_i},
\]

where the \(A_i \) are linear operators from \(U \) to \(V \) and the \(B_i \) are linear operators from \(V \) to \(W \). We will use \(\mathcal{P}(\xi) = \sum_{i=1}^{n} \xi_i A_i \) and \(\mathcal{Q}(\xi) = \sum_{i=1}^{n} \xi_i B_i \) to denote the symbols of \(\mathcal{P} \) and \(\mathcal{Q} \), respectively. We denote by \(\mathcal{D}'(\mathbb{R}^n, V) \) the space of distributions valued in \(V \). We define a short elliptic complex of order 1 over \(\mathbb{R}^n \) to be

\[
\mathcal{D}'(\mathbb{R}^n, U) \xrightarrow{\mathcal{P}} \mathcal{D}'(\mathbb{R}^n, V) \xrightarrow{\mathcal{Q}} \mathcal{D}'(\mathbb{R}^n, W)
\]

such that the symbol complex

\[
\mathbb{R}^n \xrightarrow{\mathcal{P}(\xi)} V \xrightarrow{\mathcal{Q}(\xi)} W
\]

is exact for all \(\xi \neq 0 \in \mathbb{R}^n \).

From an elliptic complex, we form the adjoint complex

\[
\mathcal{D}'(\mathbb{R}^n, W) \xrightarrow{\mathcal{Q}^*} \mathcal{D}'(\mathbb{R}^n, V) \xrightarrow{\mathcal{P}^*} \mathcal{D}'(\mathbb{R}^n, U).
\]

Here \(\mathcal{P}^* \) is the formal adjoint defined by

\[
\int_{\mathbb{R}^n} \langle \mathcal{P}^* f, g \rangle_U = \int_{\mathbb{R}^n} \langle f, \mathcal{P} g \rangle_V
\]

for \(f \in C_0^\infty(\mathbb{R}^n, V) \) and \(g \in C_0^\infty(\mathbb{R}^n, U) \). So, we have

\[
\mathcal{P}^* = -\sum_{i=1}^{n} A_i^* \frac{\partial}{\partial x_i},
\]

and similarly for \(\mathcal{Q}^* \). Here, we have identified \(U^*, V^*, \) and \(W^* \) with \(U, V \) and \(W \), respectively, by use of their inner products. Note that the adjoint complex is elliptic if and only if the original complex is.

From this, we define an associated second order Laplace-Beltrami operator by

\[
\Delta = \Delta_V = -\mathcal{P} \mathcal{P}^* - \mathcal{Q} \mathcal{Q} : \mathcal{D}'(\mathbb{R}^n, V) \to \mathcal{D}'(\mathbb{R}^n, V),
\]
with symbol denoted by $\triangle(\xi) : V \to V$. Linear algebra shows that for every $v \in V$, $\langle -\triangle(\xi)v, v \rangle = |P^*(\xi)v|^2 + |Q(\xi)v|^2 \geq 0$. That equality only occurs when $\xi = 0$ follows from the definition of an elliptic complex. Thus, the linear operator $\triangle(\xi) : V \to V$ is invertible for $\xi \neq 0$. We also have that as a function in ξ, $\triangle(\xi)$ is homogeneous of degree 2. So, letting $c = \max |\xi| = 1 \|\triangle^{-1}(\xi) : V \to V\|$, we get the estimate

$$\|\triangle^{-1}(\xi)\| \leq c |\xi|^{-2}.$$

So, solving the Poisson equation $\triangle \varphi = F$ with $F \in C^\infty_0(\mathbb{R}^n, V)$, we find the second derivatives of φ by noting that $\frac{\partial^2 \varphi}{\partial x_i \partial x_j}(\xi) = \xi_i \xi_j \triangle^{-1}(\xi) \tilde{F}(\xi)$.

Since $\xi_i \xi_j \triangle^{-1}(\xi) : V \to V$ is bounded, this gives rise to a Calderón-Zygmund type singular integral operator, $R_{ij} F = \frac{\partial^2}{\partial x_i \partial x_j} \varphi$ which is bounded on L^p for $1 < p < \infty$. We will refer to these as the second order Riesz type transforms, due to the similarities with the classical Riesz transforms. A detailed discussion of Calderón-Zygmund singular integral operators and, in particular, the classical Riesz transforms, can be found in [8].

We refer the reader to [2], [4], [9], and [10] for further reading on elliptic complexes.

We now present a previously known generalized Poincaré inequality; see [4] for example.

Theorem 2.1. Let $1 < p < \infty$, and let

$$D'(\mathbb{R}^n, \mathbb{X}) \xrightarrow{R} D'(\mathbb{R}^n, \mathbb{U}) \xrightarrow{P} D'(\mathbb{R}^n, V) \xrightarrow{Q} D'(\mathbb{R}^n, W)$$

be an elliptic complex of order 1, and let $f \in D'(\mathbb{R}^n, U)$ such that $Pf \in L^p(\mathbb{R}^n, V)$. Then there exists $f_0 \in D'(\mathbb{R}^n, U) \cap \ker P$ with

$$\sum_j \left\| \frac{\partial}{\partial x_j} (f - f_0) \right\|_p \leq C \|Pf\|_p.$$

Proof. Here we shall need not only the Laplace-Beltrami operator for functions valued in V, but also the Laplace-Beltrami operator for functions valued in U, $-\triangle_U = RR^* + P^*P$. There exists $\varphi \in D'(\mathbb{R}^n, U)$ such that $\triangle_U \varphi = f$. Note that because of the exactness of the elliptic complex, we have the identity

$$\triangle_U \varphi = -P \varphi + QP \varphi - Q^* Q \varphi = -P^* \varphi - PR^* \varphi = \varphi \triangle_U \varphi = Pf.$$

Let $f_0 = f + P^* \varphi$. Now it simply remains to verify that f_0 satisfies the conclusions of the theorem. First,

$$Pf_0 = Pf + P^* \varphi = Pf + P^*P \varphi + P^* \varphi + P^* \varphi = Pf - P \triangle_U \varphi = 0.$$
Also,
\[
\sum_j \left\| \frac{\partial}{\partial x_j}(f - f_0) \right\|_p = \sum_j \left\| - \frac{\partial}{\partial x_j} P^* P \varphi \right\|_p \leq \sum_{i,j} \left\| A^* \frac{\partial^2}{\partial x_i \partial x_j} P \varphi \right\|_p \\
\leq \sum_{i,j} \left\| A^* R_{ij} P f \right\|_p \leq \sum_{i,j} \left\| A^* \right\| \left\| C_{i,j} \right\| \left\| P f \right\|_p \\
\leq C \left\| P f \right\|_p. \quad \Box
\]

3. Generalized inverses

Before we are able to present the second theorem, we need to look at the theory of generalized inverses.

Proposition 3.1. For \(A \in \operatorname{Hom}(U, V) \), there exists a unique \(A^\dagger \in \operatorname{Hom}(V, U) \), called the Moore-Penrose generalized inverse, with the following properties:

1. \(A A^\dagger A = A : U \to V \),
2. \(A^\dagger A A^\dagger = A^\dagger : V \to U \),
3. \((AA^\dagger)^* = AA^\dagger : V \to V \),
4. \((A^\dagger A)^* = A^\dagger A : U \to U \).

The linear map \(A^\dagger \) has properties similar to inverse matrices that make it valuable as a tool.

Proposition 3.2. For \(\lambda \neq 0 \), \((\lambda A)^\dagger = \lambda^{-1} A^\dagger \).

Proposition 3.3. For a continuous matrix-valued function \(P = P(\xi) \), the function \(P^\dagger = P^\dagger(\xi) \) is continuous at \(\xi \) if and only if there is a neighborhood of \(\xi \) on which \(P \) has constant rank.

Proposition 3.4. \(AA^\dagger \) is the orthogonal projection onto the image of \(A \). \(A^\dagger A \) is the orthogonal projection onto the orthogonal complement of the kernel of \(A \).

For a more detailed discussion of generalized inverses and the proofs of these results, consult [1] and the references cited there. Generalized inverses are the additional tools we need for the following theorem.

Theorem 3.5. Let \(P : \mathcal{D}'(\mathbb{R}^n, U) \to \mathcal{D}'(\mathbb{R}^n, V) \) be a differential operator of order 1 with constant coefficients and symbol \(P(\xi) \) which is of constant rank for \(\xi \neq 0 \), and let \(f \in \mathcal{D}'(\mathbb{R}^n, U) \) such that \(Pf \in L^p(\mathbb{R}^n, V) \), \(1 < p < \infty \). Then there exists \(f_0 \in \mathcal{D}'(\mathbb{R}^n, U) \) such that \(Pf_0 = 0 \) and
\[
\sum_j \left\| \frac{\partial}{\partial x_j} (f - f_0) \right\|_p \leq C \left\| Pf \right\|_p.
\]

Note that this is the same constant rank condition investigated in [3] in relation to quasiconvexity of variational integrals.

Proof. From the symbol \(P(\xi) : U \to V \), we have its generalized inverse \(P^\dagger(\xi) : V \to U \). We use this to define pseudodifferential operators \(R_j \), which we will refer to as the first order Riesz type transforms. For \(h \in C_c^\infty(\mathbb{R}^n, V) \), we define \(R_j h(x) = (2\pi)^{-n/2} \int e^{i\xi j} \xi_j P^\dagger(i\xi) h(\xi) d\xi \). Note that since \(P(\xi) \) is homogeneous of degree 1, we get that for \(\lambda \neq 0 \),
\[
(\lambda \xi_j) P^\dagger(i\lambda \xi) = \lambda \xi_j (\lambda P(i\xi))^\dagger = \xi_j P(i\xi).
\]
So, $\xi_j \mathcal{P}^\dagger(i\xi)$ is homogeneous of degree 0. Since $\mathcal{P}(\xi)$ is a polynomial, $\mathcal{P}^\dagger(i\xi)$ is infinitely differentiable on $|\xi| = 1$ by Theorem 4.3 of [5], which gives a formula for the derivative of $\mathcal{P}^\dagger(\xi)$ in terms of $\mathcal{P}(\xi)$, $\mathcal{P}(\xi)$, and the derivative of $\mathcal{P}(\xi)$. Thus, R_j extends continuously to a Calderón-Zygmund singular integral operator from $L^p(\mathbb{R}^n, \mathcal{V})$ to $L^p(\mathbb{R}^n, \mathcal{U})$. Recalling the definition of the operator $\mathcal{P}^\dagger = \sum_j A_j \partial \partial x_j$, we note that

$$\sum_j A_j R_j h = (2\pi)^{-n/2} \int e^{ix \cdot \xi} \mathcal{P}(i\xi) \mathcal{P}^\dagger(i\xi) \hat{h}(\xi) d\xi.$$

So, if $h = \mathcal{P}g$, then

$$\sum_j A_j R_j h = (2\pi)^{-n/2} \int e^{ix \cdot \xi} \mathcal{P}(i\xi) \mathcal{P}^\dagger(i\xi) \mathcal{P}(i\xi) \hat{g}(\xi) d\xi = (2\pi)^{-n/2} \int e^{ix \cdot \xi} \mathcal{P}(i\xi) \hat{g}(\xi) d\xi = \mathcal{P}g = h.$$

Also, since this is defined by a Calderón-Zygmund singular integral operator, the identity

$$\sum_j A_j R_j = Id$$

extends to the L^p closure of the set $\{\mathcal{P}g : g \in C_0^\infty\}$, which is sufficient for the subsequent computations.

The reader may wish to notice that

$$\left(\frac{\partial}{\partial x_j} R_k h \right)^\wedge = (i\xi_j) \left(i\xi_k \mathcal{P}^\dagger(i\xi) \hat{h}(\xi) \right) = (i\xi_k) \left(i\xi_j \mathcal{P}^\dagger(i\xi) \hat{h}(\xi) \right) = \left(\frac{\partial}{\partial x_k} R_j h \right)^\wedge,$$

which means that

$$\frac{\partial}{\partial x_j} R_k h = \frac{\partial}{\partial x_k} R_j h.$$

Thus,

$$\frac{\partial}{\partial x_j} \left(\frac{\partial}{\partial x_k} f - R_k \mathcal{P} f \right) = \frac{\partial}{\partial x_k} \left(\frac{\partial}{\partial x_j} f - R_j \mathcal{P} f \right).$$

This can be viewed as saying that for any basis vector v_l of \mathcal{V},

$$\text{curl} \left[\begin{array}{c} \left\langle \frac{\partial}{\partial x_1} f - R_1 \mathcal{P} f, v_l \right\rangle_{\mathcal{V}} \\ \vdots \\ \left\langle \frac{\partial}{\partial x_n} f - R_n \mathcal{P} f, v_l \right\rangle_{\mathcal{V}} \end{array} \right] = 0.$$

Thus, assuming that we can find a distribution f_l such that

$$(3.1) \quad \frac{\partial}{\partial x_j} f_l = \left\langle \frac{\partial}{\partial x_1} f - R_1 \mathcal{P} f, v_l \right\rangle_{\mathcal{V}},$$

we can define f_0 by

$$f_0 = \sum_l f_l v_l,$$

which means that $\frac{\partial}{\partial x_j} f_0 = \frac{\partial}{\partial x_j} f - R_j \mathcal{P} f$, for $j = 1, \ldots, n$. Then, we have

$$\mathcal{P} f_0 = \mathcal{P} f - \sum_j A_j R_j \mathcal{P} f = \mathcal{P} f - \mathcal{P} f = 0.$$
Also,
\[
\sum_j \left\| \frac{\partial}{\partial x_j} (f - f_0) \right\|_p = \sum_j \| R_j Pf \|_p \leq C \| Pf \|_p,
\]
where the constant depends on the norms of the Riesz type transforms. Thus, it only remains to prove Lemma 3.6, a distributional Poincaré lemma, which is used in (3.1). \(\square\)

Lemma 3.6 (Distributional Poincaré Lemma). Let \(\omega \in \mathcal{D}' \left(\mathbb{R}^n, \Lambda^l(\mathbb{R}^n) \right)\) with \(1 \leq l \leq n\), where \(\Lambda^l(\mathbb{R}^n)\) denotes the space of \(l\)-covectors on \(\mathbb{R}^n\), such that \(d\omega = 0\). Then there exists \(\nu \in \mathcal{D}' \left(\mathbb{R}^n, \Lambda^{l-1}(\mathbb{R}^n) \right)\) such that \(\omega = d\nu\).

Note that this was used in the sense that we can view a vector field \(F \in \mathcal{D}'(\mathbb{R}^n, \mathbb{R}^n)\) as a differential form in \(\mathcal{D}'(\mathbb{R}^n, \Lambda^1(\mathbb{R}^n))\) and that the conditions \(\nabla f = F\) become \(dF = 0\) and \(df = F\) from this point of view.

Proof. We will use the notation \(dx_I\) to denote \(dx_{i_1} \wedge \cdots \wedge dx_{i_l}\), where \(\{x_{i_1}, \ldots, x_{i_l}\}\) is any collection of \(l\) basis elements and \(i_1 < i_2 < \cdots < i_l\). Let \(\omega = \sum I \omega_I dx_I\), where \(\omega_I \in \mathcal{D}'(\mathbb{R}^n)\). It is well known that \(\omega_I\) can be written as \(\omega_I = \Delta \eta_I = (dd^* + d^* d) \eta_I\) for \(\eta_I \in \mathcal{D}'(\mathbb{R}^n)\). See, for example, Corollary 3.6.2 in [7]. Thus, \(\omega = \Delta \eta = (dd^* + d^* d) \eta\), where \(\eta = \sum \eta_I dx_I\). Notice that
\[
\Delta d\eta = d\Delta \eta = d\omega = 0.
\]

Thus, by Weyl’s Lemma, we get that \(d\eta\) is infinitely differentiable, which gives us that \(d^* d\eta \in C^\infty(\mathbb{R}^n, \Lambda^l(\mathbb{R}^n))\). Also, we have that
\[
d \left(dd^* \eta \right) = d\omega - d d^* d\eta = 0.
\]

So, since the De Rham cohomology of \(\mathbb{R}^n\) is trivial except in dimension 0, we get that \(d^* d\eta = d\kappa\) for some \(\kappa \in C^\infty(\mathbb{R}^n, \Lambda^{l-1}(\mathbb{R}^n))\). Letting \(\nu = \kappa + d^* \eta\) we get that
\[
d\nu = d\kappa + d d^* \eta = d^* d\eta + d d^* \eta = \omega,
\]
as desired. \(\square\)

4. Sufficiency of Generalized Inverses

At this point we have proved Theorem 2.1 and Theorem 3.3 in an attempt to answer our question about when a generalized Poincaré inequality is true. What is unclear is if these two results are related in any way.

Since this next result is true for a broader class of elliptic complexes than what we have previously defined, we will take a moment for definitions so that we may state our result in this broader sense. For the differential operators
\[
\mathcal{P} = \sum_{|\alpha| \leq m} A_\alpha(x) D^\alpha
\]
and
\[
\mathcal{Q} = \sum_{|\alpha| \leq m} B_\alpha(x) D^\alpha
\]
of order \(m\) with variable coefficients, then
\[
\mathcal{D}'(\mathbb{R}^n, \mathcal{U}) \xrightarrow{\mathcal{P}} \mathcal{D}'(\mathbb{R}^n, \mathcal{V}) \xrightarrow{\mathcal{Q}} \mathcal{D}'(\mathbb{R}^n, \mathcal{W})
\]
is an elliptic complex of order \(m\) if \(\mathcal{Q}\mathcal{P} = 0\) and the symbol complex
\[
\mathcal{U} \xrightarrow{\mathcal{P}_m(x, \xi)} \mathcal{V} \xrightarrow{\mathcal{Q}_m(x, \xi)} \mathcal{W}
\]
A GENERALIZED POINCARÉ INEQUALITY 2727

is exact for every \(x \) and every \(\xi \neq 0 \). Here, \(P_m \) denotes the principal symbol of \(P \), that is, \(\sum_{|\alpha|=m} A_\alpha(x)\xi^\alpha \), and similarly for \(Q_m \).

Theorem 4.1. A sequence

\[
\mathcal{D}'(\mathbb{R}^n, U) \xrightarrow{P} \mathcal{D}'(\mathbb{R}^n, V) \xrightarrow{Q} \mathcal{D}'(\mathbb{R}^n, W)
\]

with continuous coefficients is an elliptic complex if and only if all of the following hold:

(i) \(QP = 0 \).

(ii) The sequence

\[
\mathcal{U} \xrightarrow{P_m(y, \xi)} \mathcal{V} \xrightarrow{Q_m(y, \xi)} \mathcal{W}
\]

is exact for some \(y \) and some \(\xi \neq 0 \).

(iii) For each multi-index \(\gamma \) of length \(2m \),

\[
\sum_{\alpha+\beta=\gamma, |\alpha|=|\beta|=m} B_\beta(x)A_\alpha(x) = 0
\]

as operators from \(\mathcal{U} \) to \(\mathcal{V} \).

(iv) The matrix \(P_m(x, \xi) \) has constant rank for all \(x \) and all \(\xi \neq 0 \).

(v) The matrix \(Q_m(x, \xi) \) has constant rank for all \(x \) and all \(\xi \neq 0 \).

Proof. We will begin by showing that an elliptic complex has the stated properties. Note that (i) and (ii) follow trivially from the definition. Since \(Q_m(x, \xi) P_m(x, \xi) = 0 \) as functions of \(\xi \), we get (iii) by equating coefficients of \(\xi^\gamma \). Since the \(A_\alpha \) and \(B_\beta \) are continuous, we get that rank \(P_m \) and rank \(Q_m \) are lower semicontinuous. By the Rank-Nullity Theorem, the fact that the symbol complex is exact, and the lower semicontinuity of rank \(P_m \), we get that rank \(Q_m \) is upper semicontinuous. Therefore rank \(Q_m \) is continuous, and, since it is valued in a discrete set, we get (v). Then, (iv) follows by the Rank-Nullity Theorem.

Now, we will assume that properties (i) through (iv) hold and show that the complex is elliptic. Property (iii) gives us that the composition \(Q_m P_m \) is identically 0, which means that image \(P_m \subseteq \ker Q_m \). Now, the Rank-Nullity Theorem, and properties (ii), (iv), and (v) give us that rank \(P_m = \text{Null } Q_m(x, \xi) \), proving ellipticity.

This result shows that Theorem 2.1 follows from Theorem 3.5. The following example shows that Theorem 3.5 is a strictly stronger result.

Example 4.2. Consider the differential operator \(P : \mathcal{D}'(\mathbb{R}^2, \mathbb{R}^2) \to \mathcal{D}'(\mathbb{R}^2, \mathbb{R}^3) \) given by

\[
P = \begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y}
\end{bmatrix}.
\]

Clearly, the symbol of \(P \) has constant rank away from \(\xi = 0 \).

We will show that there is no first order constant coefficient differential operator \(Q = B_1 \frac{\partial}{\partial x} + B_2 \frac{\partial}{\partial y} \) such that

\[
\mathcal{D}'(\mathbb{R}^2, \mathbb{R}^2) \xrightarrow{P} \mathcal{D}'(\mathbb{R}^2, \mathbb{R}^3) \xrightarrow{Q} \mathcal{D}'(\mathbb{R}^2, \mathbb{W})
\]

is an elliptic complex. Since the cokernel of \(A_i \) has dimension 1 for each \(i \), the largest that \(\mathcal{W} \) need be is \(\mathbb{R}^2 \), corresponding to the possibility that the images of
the B_i only share 0. Now, solving the equation $Q(\xi)P(\xi) = 0$ with $W = \mathbb{R}^2$, we see that Q must be the zero operator, but the image of P is not all of \mathbb{R}^3. Thus, Theorem 3.5 applies to P, but Theorem 2.1 does not.

Acknowledgement

The author would like to thank the referee for several valuable comments which helped create a clearer and more self-contained document.

References

Department of Mathematics, Syracuse University, Syracuse, New York 13210

E-mail address: degustaf@syr.edu