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(Communicated by Alexander N. Dranishnikov)

Dedicated to Wis Comfort on the occasion of his 78th birthday

Abstract. A topological group is locally pseudocompact if it contains a non-

empty open set with pseudocompact closure. In this paper, we prove that if G
is a group with the property that every closed subgroup of G is locally pseu-
docompact, then G0 is dense in the component of the completion of G, and
G/G0 is zero-dimensional. We also provide examples of hereditarily discon-
nected pseudocompact groups with strong minimality properties of arbitrarily
large dimension, and thus show that G/G0 may fail to be zero-dimensional
even for totally minimal pseudocompact groups.

1. Introduction

A Tychonoff space is zero-dimensional if it has a base consisting of clopen (open-
and-closed) sets. With each topological group G there are associated functorial
subgroups related to the connectedness properties of G, defined as follows (cf. [11,
1.1.1]):

(a) G0 denotes the connected component of the identity;
(b) q(G) denotes the quasi-component of the identity, that is, the intersection

of all clopen sets containing the identity;
(c) z(G) denotes the intersection of all kernels of continuous homomorphisms

from G into zero-dimensional groups;
(d) o(G) denotes the intersection of all open subgroups of G.

It is well known that these subgroups are closed and normal (cf. [19, 7.1], [12,
2.2], and [22, 1.32(b)]). Clearly, G0 ⊆ q(G) ⊆ z(G) ⊆ o(G), and all four are equal
for locally compact groups.

Theorem 1.1 ([19, 7.7, 7.8]). Let L be a locally compact group. Then L/L0 is
zero-dimensional and L0 = q(L) = z(L) = o(L).
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The aim of the present paper is to investigate to what extent the condition of local
compactness can be relaxed in Theorem 1.1. Although Theorem 1.1 might appear
as a result about connectedness, it has far more to do with different degrees of
disconnectedness. Following [18], we say that a space X is hereditarily disconnected
if its connected components are singletons, and X is totally disconnected if its quasi-
components are singletons. Clearly,

zero-dimensional
(∗)
=⇒ totally disconnected

(∗∗)
=⇒ hereditarily disconnected,

and by Vedenissoff’s classic theorem, both implications are reversible for locally
compact (Hausdorff) spaces; that is, the three properties are equivalent for such
spaces (cf. [36]).

It is well known that the quotient G/G0 is hereditarily disconnected for ev-
ery topological group G (cf. [19, 7.3] and [22, 1.32(c)]). Thus, if the implica-
tions (∗) and (∗∗) are reversible for G/G0, then G/G0 is zero-dimensional, and so
G0 = q(G) = z(G). If in addition z(G) = o(G), then Theorem 1.1 holds for G. This
phenomenon warrants introducing some terminology.

Definition 1.2. A topological group G is Vedenissoff if the quotient G/G0 is zero-
dimensional; if in addition z(G) = o(G), then we say that G is strongly Vedenissoff.

Our goal is to identify classes of (strongly) Vedenissoff groups and to find exam-
ples of non-Vedenissoff groups that have many compactness-like properties. The
latter will demonstrate how close a group must be to being locally compact (or
compact) in order to be Vedenissoff. (Not every Vedenissoff group is strongly Ve-
denissoff. Indeed, Q/Z is zero-dimensional, but has no proper open subgroups, and
so z(Q/Z) �= o(Q/Z). However, thanks to Theorem 2.7(a) below, these two notions
coincide in the class of groups that are considered in this paper.)

A Tychonoff space X is pseudocompact if every continuous real-valued map on X
is bounded. A topological group G is locally pseudocompact if there is a neighbor-
hood U of the identity such that clG U is pseudocompact. (Clearly, every metrizable
locally pseudocompact group is locally compact.) We say that G is hereditarily
[locally] pseudocompact if every closed subgroup of G is [locally] pseudocompact.
(Note that the adjective hereditarily applies only to closed subgroups here, and not
to all subgroups. Indeed, by Corollary 2.6 below, if every subgroup of a topological
group is locally pseudocompact, then the group is discrete, which is of no interest
for the present paper.) More than fifteen years ago, Dikranjan proved the following
theorem.

Theorem 1.3 ([10, 1.2, 2.6]). Let G be a hereditarily pseudocompact group. Then

G/G0 is zero-dimensional, G0 = q(G), and G0 is dense in (G̃)0; that is, G is
strongly Vedenissoff.

We obtain in this paper a theorem that simultaneously generalizes Theorems 1.1
and 1.3 and provides a positive solution to a problem posed by Comfort and Lukács
(cf. [3, 4.13]).

Theorem A. Let G be a hereditarily locally pseudocompact group. Then G/G0 is
zero-dimensional and G0 = q(G) = z(G) = o(G); that is, G is strongly Vedenissoff.

The next example shows that the condition of hereditary local pseudocompact-
ness in Theorem A cannot be replaced with (local) pseudocompactness.
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Example 1.4. Comfort and van Mill showed that for every natural number n there
exists an abelian pseudocompact group Gn such that Gn is totally disconnected, but
dimGn = n (cf. [5, 7.7]). In particular, the converse of the implication (∗) may fail
for these groups Gn, and they are not Vedenissoff. This shows that pseudocompact
groups need not be Vedenissoff.

Although pseudocompactness alone is too weak a property to imply that the
group is Vedenissoff, it turns out that it is sufficient in the presence of some ad-
ditional compactness-like properties. Recall that a (Hausdorff) topological group
G is minimal if there is no coarser (Hausdorff) group topology (cf. [31] and [16]),
and G is totally minimal if every (Hausdorff) quotient of G is minimal (cf. [13]).
Equivalently, G is totally minimal if every continuous surjective homomorphism
G → H is open.

An unpublished result of Shakhmatov states that the converse of (∗) holds for
minimal pseudocompact groups. Specifically, Shakhmatov proved that every pseu-
docompact totally disconnected group admits a coarser zero-dimensional group
topology, and thus minimal pseudocompact totally disconnected groups are zero-
dimensional (cf. [10, 1.6]). We prove a generalization of Shakhmatov’s result:

Theorem B.

(a) Every locally pseudocompact totally disconnected group admits a coarser
zero-dimensional group topology.

(b) Every minimal, locally pseudocompact, totally disconnected group is zero-
dimensional and thus strongly Vedenissoff.

Theorem C. Let G be a totally minimal locally pseudocompact group. Then
G0 = q(G) if and only if G/G0 is zero-dimensional, in which case G is strongly
Vedenissoff.

Local pseudocompactness cannot be omitted from Theorem B. Indeed, more
than twenty years ago, Arhangel′skĭı asked whether every totally disconnected
topological group admits a coarser zero-dimensional group topology. Megrelishvili
answered this question in the negative by constructing a minimal totally discon-
nected group that is not zero-dimensional (cf. [23]). In particular, the converse of
the implication (∗) fails for minimal groups.

Our last result is a negative one, and it is a far reaching extension of the result of
Comfort and van Mill cited in Example 1.4. Recall that a group G is perfectly (to-
tally) minimal if the product G×H is (totally) minimal for every (totally) minimal
group H (cf. [32]).

Theorem D. For every natural number n or n = ω, there exists an abelian pseu-
docompact group Gn such that Gn is perfectly totally minimal, hereditarily discon-
nected, but dimGn = n.

There are many known examples of pseudocompact groups for which the equality
G0 = q(G) fails (cf. [9, Theorem 11], [11, 1.4.10], and [3, 4.4(d), 5.6]). By Theo-
rem C, one has (Gn)0 �= q(Gn) for each of the groups Gn provided by Theorem D,
and thus the Gn are not totally disconnected. This shows that the converse of the
implication (∗∗) may fail for totally minimal pseudocompact groups.

The paper is structured as follows. In §2, we recall some well-known facts on
locally pseudocompact and locally compact groups, their Gδ-topologies, and their
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connectedness properties. The proofs of Theorems B and C are also presented in
§2. We devote §3 to the proof of Theorem A. Finally, in §4, we prove a general
theorem concerning the embedding of groups with minimality properties as quasi-
components of pseudocompact groups with the same minimality properties, which
yields Theorem D.

2. Preliminaries on locally pseudocompact groups

All topological groups here are assumed to be Hausdorff, and thus Tychonoff
(cf. [19, 8.4] and [22, 1.21]). Except when specifically noted, no algebraic as-
sumptions are imposed on the groups; in particular, our groups are not necessarily
abelian. A “neighborhood” of a point means an open set containing the point.

Although, in general, there are a number of useful uniform structures on a topo-
logical group that induce its topology, in this note, we adhere to the two-sided
uniformity and the notions of precompactness and completeness that derive from
it (cf. [30], [37], [28], [19, (4.11)-(4.15)], and [22, Section 1.3]). A fundamental
property of this notion of completeness is that for every topological group G there

is a complete topological group G̃ (unique up to a topological isomorphism) that

contains G as a dense topological subgroup; in other words, G̃ is a group completion
of G (cf. [28] and [22, 1.46]).

Theorem 2.1 ([22, 1.49(a), 1.51]).

(a) Let G be a topological group, and H a subgroup. Then H̃ = cl
˜G H.

(b) If G is a locally compact group, then G is complete, that is, G̃ = G.

A subset X of a topological group G is precompact if for every neighborhood
U of the identity, there is a finite S ⊆ X such that X ⊆ (SU) ∩ (US). (Some
authors refer to precompact sets as bounded ones.) A topological group G is locally
precompact if G admits a base of precompact neighborhoods at the identity. Since
every pseudocompact subset of a topological group is precompact (cf. [7, 1.11]),
locally pseudocompact groups are locally precompact.

Weil showed in 1937 that the completion of a locally precompact group with
respect to its left or right uniformity admits the structure of a locally compact group
containing G as a dense topological subgroup (cf. [37]). This (one-sided) Weil-

completion coincides with the Rǎıkov-completion G̃ constructed in 1946 (cf. [28]).

Therefore, G is locally precompact if and only if G̃ is locally compact.
Theorem 2.2 below, which summarizes the main results of [6] and [7], provides

a characterization of (locally) pseudocompact groups. Recall that a Gδ-subset of a
space (X, T ) is a set of the form

⋂
n<ω

Un with each Un ∈ T . The Gδ-topology on X

is the topology generated by the Gδ-subsets of (X, T ). A subset of X is Gδ-open
(respectively, Gδ-closed, Gδ-dense) if it is open (respectively, closed, dense) in the
Gδ-topology on X.

Theorem 2.2 ([6] and [7]). A topological group G is [locally] pseudocompact if

and only if G is [locally] precompact and Gδ-dense in G̃, in which case G̃ = βG

[βG̃ = βG]. In particular, every precompact locally pseudocompact group is pseu-
docompact.

Since the Gδ-topology of groups plays an important role in the present work, we
introduce some notation and then record a few useful facts. We let Λ(G) denote the
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set of closed Gδ-subgroups of the topological group G, that is, closed subgroups of
G that are also Gδ-subsets of G, and we set Λc(G) := {K ∈ Λ(G) | K is compact}
and Λ∗

c(G) := {K ∈ Λc(G) | K � G}.

Theorem 2.3. Let G be a topological group. Then:

(a) ([22, 2.5]) the Gδ-topology is a group topology on G;
(b) ([19, 8.7]) if G is locally compact, then Λc(G) is a base at the identity for

the Gδ-topology on G;
(c) ([19, 8.7]) if G is locally compact and σ-compact, then Λ∗

c(G) is a base at
the identity for the Gδ-topology on G.

We have already mentioned that the adjective hereditarily used in the term hered-
itarily locally pseudocompact applies only to the closed subgroups of a given group.
The next theorem shows that it would be uninteresting to interpret hereditarily as
applying to all subgroups.

Theorem 2.4. Let G be a locally pseudocompact group. If every countable subgroup
of G is locally pseudocompact, then G is discrete.

Before we proceed to the proof of Theorem 2.4, we formulate a well-known
observation that will be frequently used later on too.

Lemma 2.5. Let H be a topological group, D a dense subgroup, and O an open
subgroup of H. Then clH(D ∩O) = O.

Proof. Since D is dense and O is open in H, one has clH O = clH(D ∩O). On the
other hand, O is closed in H, because every open subgroup of a topological group
is also closed (cf. [19, 5.5]). This completes the proof. �

Proof of Theorem 2.4. The proof consists of two steps.

Step 1. The completion L := G̃ is locally compact, and so by Theorem 2.3(b),
Λc(L) is a base at the identity of the Gδ-topology on L. Pick K ∈ Λc(L). Since G
is locally pseudocompact, by Theorem 2.2, G is Gδ-dense in L. By Theorem 2.3(a),
the Gδ-topology is a group topology on L, and thus, by Lemma 2.5, P := K ∩G
is Gδ-dense in K. Let S be a countable subgroup of P . By our assumption, S is
locally pseudocompact, and by Theorem 2.2, S is pseudocompact. Thus, S is finite,
because there are no countably infinite homogeneous pseudocompact spaces (cf. [17,
1.3]), and so P is finite. In particular, K is finite. Therefore, L has a countable
pseudocharacter, and hence L is metrizable (cf. [18, 3.3.4]). Consequently, G is
metrizable.

Step 2. Let S be a countable subgroup of G. By our assumption, S is locally
pseudocompact, and thus it is locally compact, because G is metrizable. Conse-
quently, by the Baire Category Theorem, S is discrete. Therefore, every countable
subgroup of the metrizable group G is discrete. Hence, G is discrete, as desired. �

Corollary 2.6. If every subgroup of a topological group G is locally pseudocompact,
then G is discrete. �

Next, we summarize the relationship between connectedness properties of locally
pseudocompact groups and their completions.

Theorem 2.7. Let G be a locally pseudocompact group. Then:

(a) ([8, 1.4], [3, 4.5]) q(G) = o(G) = (G̃)0 ∩G;
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(b) ([33], [3, 4.8]) G is zero-dimensional if and only if G̃ is zero-dimensional;
(c) ([8, 1.7], [3, 4.11(b)]) G/G0 is zero-dimensional if and only if G0 is dense

in (G̃)0, in which case G0 = q(G).

We turn to proving Theorems B and C, which follow from Theorem 2.7. Recall
that a group topology is linear if it admits a base at the identity consisting of
subgroups. Since every open subgroup is also closed, every linear group topology
is zero-dimensional. We prove a slightly stronger version of Theorem B.

Theorem B′.

(a) Every locally pseudocompact totally disconnected group admits a coarser
linear group topology.

(b) Every minimal, locally pseudocompact, totally disconnected group has a lin-
ear topology, and thus it is strongly Vedenissoff.

Proof. (a) The family of open subgroups in a topological group is closed under
conjugation and formation of finite intersections. Since G is totally disconnected,
q(G) = {e}, and since G is locally pseudocompact, by Theorem 2.7(a), q(G) = o(G).
Thus, o(G) = {e}. Therefore, the family of open subgroups in G forms a base at
the identity for a Hausdorff group topology on G, and it is obviously coarser than
the topology of G. Clearly, this topology is linear.

(b) follows from (a) and the definition of minimality. �
Theorem C′. Let G be a totally minimal locally pseudocompact group. Then
G0 = q(G) if and only if G/G0 is zero-dimensional, in which case G is strongly
Vedenissoff.

Proof. Suppose that G0 = q(G). Then the quotient G/G0 = G/q(G) is minimal,
locally pseudocompact, and totally disconnected. Thus, by Theorem B(b), G/G0 is
zero-dimensional. By Theorem 2.7(a), q(G) = o(G), and in particular, z(G) = o(G).
Therefore, G is strongly Vedenissoff, as required. The converse follows by Theo-
rem 2.7(c). �

In the definition of a linear topology, we asked for a base at the identity consisting
of open subgroups. Some authors define the same term by requiring the existence of
a base at the identity consisting of open normal subgroups. This stronger property
warrants defining a new functorial subgroup of a topological group G, namely,
the intersection o∗(G) of all open normal subgroups of a group G. If a locally
compact group L admits a base at the identity consisting of neighborhoods that
are invariant under conjugation (that is, L is so-called balanced or admits small
invariant neighborhoods), which is the case for compact or abelian groups, then
o(L) = o∗(L). There are, however, many locally compact groups that do not have
this property, a fact that explains our choice of terminology.

Examples 2.8.

(a) The semidirect product L := {0, 1}Z � Z, where Z acts on the compact
group K := {0, 1}Z by shifts, is locally compact and zero-dimensional, and
thus o(L) is trivial. However, K is the smallest open normal subgroup of
L, and therefore o∗(L) = K.

(b) For p ∈ P, let Qp denote the (locally compact) field of p-adic numbers. The
discrete multiplicative group Q× of non-zero rationals acts on Qp by mul-
tiplication. The semidirect product L := (Qp,+)�Q× is locally compact
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and zero-dimensional (and so, again, o(L) is trivial), but Qp is the smallest
open normal subgroup of L, and therefore o∗(L) = Qp.

(c) In general, let G be a locally compact group and let D be a subgroup
of Aut(G) such that G contains no proper D-invariant open subgroup,
and put L := G�D, where D is equipped with the discrete topology.
Then, by Theorem 1.1, the locally compact group L has the property that
o(L) = L0 = G0 and o∗(L) = G.

3. Proof of Theorem A

Theorem A. Let G be a hereditarily locally pseudocompact group. Then G/G0 is
zero-dimensional and G0 = q(G) = z(G) = o(G); that is, G is strongly Vedenissoff.

In this section, we present the proof of Theorem A. By Theorem 2.7(a),

q(G) = z(G) = o(G)

for every locally pseudocompact group G. We have already noted that if G/G0

is zero-dimensional, then G0 = q(G) = z(G). Thus, it suffices to show that G/G0

is zero-dimensional for every hereditarily locally pseudocompact group G. Since
every (Hausdorff) quotient of a hereditarily locally pseudocompact group is again
hereditarily locally pseudocompact, and the quotient G/G0 is hereditarily discon-
nected (cf. [19, 7.3] and [22, 1.32(c)]), it suffices to prove the following statement.

Theorem 3.1. Let G be a hereditarily locally pseudocompact, hereditarily discon-

nected group. Then G̃ is hereditarily disconnected, and G is zero-dimensional.

In the setting of Theorem 3.1, if G̃ is hereditarily disconnected, then by Theo-

rem 1.1, G̃ is zero-dimensional (because it is locally compact), and so G is zero-

dimensional too. Thus, it suffices to show that G̃ is hereditarily disconnected when-

ever G is so. We prove the contrapositive of this statement, namely, that if (G̃)0 is
non-trivial, then G0 is non-trivial too. The proof is broken down into several steps:
First, it is shown in Proposition 3.2 that Theorem 3.1 holds in the case where the

completion G̃ of G is a direct product of a zero-dimensional compact group and the

real line R. Then, in Proposition 3.4, it is proven that if G̃ contains a non-trivial
compact connected subgroup, then G0 is non-trivial. Finally, it is shown that if the

component of G̃ is non-trivial, but contains no compact connected subgroup, then
G0 contains R as a closed subgroup.

Proposition 3.2. Let N be a zero-dimensional compact group, and G a dense
hereditarily locally pseudocompact subgroup of N × R. Then one has {e} × R ⊆ G.

In order to prove Proposition 3.2, we recall a notion and a result that is well-
known to profinite group theorists. A topological group P is topologically finitely
generated if it contains a dense finitely generated group, that is, if there exists a
finite subset F of P such that P = clP 〈F 〉.

Theorem 3.3 ([29, 2.5.1], [15, 2.1(a)]). If P is a topologically finitely generated
compact zero-dimensional group, then P is metrizable.

Proof of Proposition 3.2. As G is locally pseudocompact, by Theorem 2.2, G is
Gδ-dense in N × R. The set Ar := N × {r} is a Gδ-set in N × R for every r ∈ R,
and so Ar ∩G �= ∅. Thus, for every r ∈ R, there is g ∈ N such that (g, r) ∈ G.
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Let g1, g2 ∈ N be such that x1 := (g1, 1) ∈ G and x2 := (g2,
√
2) ∈ G, and put

P := clN 〈g1, g2〉 and H := clG〈x1, x2〉. Since P is a closed subgroup of N , it is
a compact topologically finitely generated zero-dimensional group, and by Theo-
rem 3.3, P is metrizable. Thus, the product P × R is metrizable, and so H is
metrizable, being a subgroup of P × R. On the other hand, H is locally pseudocom-
pact, being a closed subgroup of the hereditarily locally pseudocompact group G.
Therefore, H is locally compact. Hence, by Theorem 2.1, H is closed not only
in G, but also in N × R.

Let π2 : N × R → R denote the second projection, and put π := π2|H . Since N
is compact and H is closed in N × R, π2 is a closed map (cf. [18, 3.1.16]), and thus
π(H) is closed in R and π is a closed map too. This implies that π is surjective,

because π(H) contains the dense subgroup 〈1,
√
2〉 of R. Consequently, π is a

quotient map, and R is topologically isomorphic to a quotient of H. Therefore,
H is not zero-dimensional, and by Theorem 1.1, H0 is non-trivial.

Since H0 ⊆ {e} × R = (N × R)0, one has H0 = {e} × R, because R has no non-
trivial proper connected subgroups. Hence, {e} × R = H0 ⊆ H ⊆ G, as desired. �

Proposition 3.4. Let G be a hereditarily locally pseudocompact group such that the

completion G̃ is σ-compact. If G̃ contains a non-trivial compact connected subgroup,
then G0 is non-trivial.

Proof. Let C be a non-trivial connected compact subgroup of G̃. By Theorem 2.3(c),

Λ∗
c(G̃) is a base at the identity for the Gδ-topology on G̃. So, we may pick

K∈Λ∗
c(G̃). Since K is a normal subgroup of G̃, the set KC is a subgroup of G̃,

and KC is compact, because both K and C are compact. Furthermore, KC is

Gδ-open in G̃, as it contains the Gδ-set K. By Theorem 2.2, G is Gδ-dense in G̃.

By Theorem 2.3(a), the Gδ-topology is a group topology on G̃. Consequently, by
Lemma 2.5, P := KC ∩G is Gδ-dense in KC; in particular, P is dense in KC, and

thus, by Theorem 2.1, P̃ = KC.
We show that P is hereditarily pseudocompact. Let S be a closed subgroup

of P . Since KC is compact, it is closed in G̃, and so P is a closed subgroup of G.
Thus, S is a closed subgroup of G, and by our assumption, S is locally pseudocom-
pact. As S is contained in the compact group KC, it is precompact. Consequently,
by Theorem 2.2, S is pseudocompact. This shows that P is hereditarily pseudo-

compact. Therefore, by Theorem 1.3, P0 is dense in (P̃ )0 = (KC)0, and hence

{e} �= C ⊆ (KC)0 ⊆ clKC P0 ⊆ cl
˜G G0.

In particular, G0 cannot be trivial, as desired. �

One last ingredient of the proof of Theorem 3.1 is a result that is often referred
to as Iwasawa’s Theorem (although it also relies on the work of Yamabe).

Theorem 3.5 ([38, Theorem 5′], [21, Theorem 13]). Let L be a connected locally
compact group. Then there is a compact connected subgroup C and closed subgroups
H1, . . . , Hr such that each Hi is topologically isomorphic to the additive group R,
and L is homeomorphic to H1 × · · · ×Hr × C.

Proof of Theorem 3.1. We prove the contrapositive of the theorem. Let G be a

hereditarily locally pseudocompact group such that (G̃)0 �= {e}. We show that
G0 �= {e}.
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Step 1. As G is locally precompact, its completion L := G̃ is locally compact. Let
U be a neighborhood of the identity in L such that clL U is compact. Put L′ := 〈U〉,
the subgroup generated by U , and G′ := L′ ∩G. We claim that by replacing G with

G′ if necessary, we may assume that G̃ is σ-compact from the outset.
Since L′ contains U , it is an open subgroup of L, and thus it is also closed.

Consequently, G′ is open and closed in G, and G′ is also hereditarily locally pseu-

docompact. By Lemma 2.5, one has L′ = clL G′, and so, by Theorem 2.1, L′ = G̃′.
As L′ is generated by U , it is compactly generated, and in particular, it is σ com-
pact (cf. [19, 5.12, 5.13]). Since L′ is an open subgroup of L, by Theorem 1.1,
L0 = o(L) ⊆ L′, and therefore L0 = L′

0 (because L′ ⊆ L implies L′
0 ⊆ L0). Simi-

larly, one has G0 = G′
0. Hence, it suffices to show that G′

0 �= {e}, and by replacing

G with G′ if necessary, we may assume that G̃ is σ-compact.

Step 2. Since G̃ is σ-compact, if G̃ contains a non-trivial compact connected
subgroup, then by Proposition 3.4, G0 is non-trivial, and we are done. Thus, from

now on, we assume that G̃ contains no non-trivial compact connected subgroups.

If N is a compact subgroup of G̃, then N0 = {e}, and by Theorem 1.1, N is

zero-dimensional. Thus, every compact subgroup of G̃ is zero-dimensional. In

particular, (G̃)0 contains no non-trivial compact connected subgroups. Therefore,

by Theorem 3.5, our assumption (G̃)0 �= {e} yields that there is a closed subgroup

H of G̃ such that H ∼= R (that is, H is topologically isomorphic to the additive
group R).

Step 3. By Theorem 2.3(c), Λ∗
c(G̃) is a base at the identity for the Gδ-topology

on G̃, and so we may pick N ∈ Λ∗
c(G̃). Since N is a normal subgroup, (G̃)0 acts

continuously on N by conjugation, and the orbit of x is a connected subspace
ofN . By Step 2, N is zero-dimensional. Thus, the orbit of each x ∈ N is a singleton.

Therefore, g−1xg = x for every g ∈ (G̃)0 and x ∈ N . In particular, the elements
of H and N commute (elementwise). We note that this argument, concerning the
commuting of connected and zero-dimensional normal subgroups, is due to K. H.
Hofmann (cf. [20]).

Let f : R → H be a topological isomorphism. The continuous surjection
h : N × R → NH given by h(x, r) = xf(r) is a homomorphism, because f is a
homomorphism, and N and H commute (elementwise). We show that h is a topo-
logical isomorphism. Since H ∼= R, the only compact subgroup of H is the trivial
one, and thus N ∩H = {e}. Therefore, h is injective. Since N is compact and

normal, and H is closed in G̃, the subgroup NH is closed in G̃, and so NH is
locally compact. The domain N × R of h is also locally compact and σ-compact.
Consequently, by the Open Mapping Theorem, h is open (cf. [19, 5.29]). Hence, h
is a topological isomorphism.

The subgroup NH is Gδ-open in G̃, because it contains the Gδ-set N . By

Theorem 2.2, G is Gδ-dense in G̃. By Theorem 2.3(a), the Gδ-topology is a group

topology on G̃. So, by Lemma 2.5, P := NH ∩G is Gδ-dense in NH; in particular,

P is dense in NH, and by Theorem 2.1, P̃ = NH . Since P is a closed subgroup
of G, it is hereditarily locally pseudocompact. Thus, P ′ := h−1(P ) satisfies the
conditions of Proposition 3.2. Consequently, H = h({e} × R) ⊆ h(P ′) ⊆ G. Hence,
G0 is non-trivial, as desired. �
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4. Proof of Theorem D

Theorem D. For every natural number n or n = ω, there exists an abelian pseu-
docompact group Gn such that Gn is perfectly totally minimal, hereditarily discon-
nected, but dimGn = n.

In this section, we prove Theorem D by establishing a general construction that
allows one to “realize” minimal abelian groups as quasi-components of minimal
pseudocompact groups. A weaker version of Theorem D, which provides totally
minimal pseudocompact groups, was announced in [11, 1.4.2]. The novelty of The-
orem D, in addition to its complete proof, is that we obtain perfectly totally minimal
pseudocompact groups.

Theorem D′. Let A be a precompact abelian group that is contained in a connected
compact abelian group C. Then there exists a pseudocompact abelian group G such

that A ∼= q(G) and C ∼= (G̃)0, and in particular, dimG = dimC. Furthermore, if

C = Ã and

(a) A is minimal, then G may be chosen to be minimal;
(b) A is totally minimal, then G may be chosen to be totally minimal;
(c) A is perfectly minimal, then G may be chosen to be perfectly minimal;
(d) A is perfectly totally minimal, then G may be chosen to be perfectly totally

minimal.

Theorem D′ follows a line of “embedding” results, which state that certain (lo-
cally) precompact groups embed into (locally) pseudocompact groups as a partic-
ular (e.g., functorial) closed subgroup (cf. [4, 2.1], [34], [5, 7.6], [35], [8, 3.6], and
[3, 5.6]). The novelty is that minimality properties of the group A are inherited by
the group G that is constructed. By the celebrated Prodanov-Stoyanov Theorem,
every minimal abelian group is precompact (cf. [26] and [27]), and so the condition
that the group A is precompact is not restrictive at all.

We first show how Theorem D follows from Theorem D′ and then proceed to
proving the latter. To that end, we recall a characterization due to Stoyanov for
groups that are not only perfectly totally minimal, but their powers have the same
property too (cf. [32]). For an abelian topological group G, let wtd(G) denote the
subgroup of elements x in G for which there exists a positive integer m such that
for every sequence {kn}∞n=1 of integers, one has mnknx −→ 0 in G. In other words,

wtd(G) := {x ∈ G | ∃m > 0, ∀{kn}∞n=1 ∈ Nω,mnknx −→ 0}.

Theorem 4.1 ([32], [14, 6.1.18]). Let P be a precompact abelian group. Then Pλ

is perfectly totally minimal for every cardinal λ if and only if wtd(P̃ ) ⊆ P .

Proof of Theorem D. Put P := Q/Z. Then P̃ = R/Z and wtd(P̃ ) = Q/Z = P , and
by Theorem 4.1, An := Pn is perfectly totally minimal for every natural number n
or n = ω, and A is contained in the connected compact group Cn := (R/Z)n. By
Theorem D′(d), there exists a perfectly totally minimal pseudocompact group Gn

such that An
∼= q(Gn) and dimGn = dimCn = n. Since

(Gn)0 ⊆ q(Gn)0 ∼= (An)0 = {0},
the group Gn is hereditarily disconnected, as desired. �

We proceed now to proving Theorem D′. The proof has two ingredients: a
zero-dimensional pseudocompact group H with good minimality properties, and
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a discontinuous homomorphism h : H̃ → C with kernel H. The desired group G
will be the sum of the graph of h and the group A formed in the product H × C.

Lemma 4.2. For every infinite cardinal λ, there exists a pseudocompact zero-
dimensional group H such that:
(i) H is perfectly totally minimal;

(ii) r0(H̃/H) ≥ 2λ.

Proof. Let P denote the set of prime integers, and for p ∈ P, let Zp denote the group
of p-adic integers. Put N :=

∏
p∈P

Zω1
p . We think of elements of N as tuples (xp,α),

where p ∈ P and α < ω1. We define three subgroups of N :
(1) E1 :=

⊕
p∈P

Zω1
p consists of elements x such that (∃α)(xp,α �= 0) only for

finitely many primes p (or equivalently, E1 = wtd(N));
(2) E2 :=

∏
p∈P

Sp, where Sp is the Σ-product of ω1-many copies of Zp (or equiva-
lently, E2 consists of elements x such that all but countably many coordinates
xp,α of x are zero);

(3) E := E1 + E2.
We claim that H := Eλ has the desired properties.

The group E is Gδ-dense in N , because it contains E2, which is clearly Gδ-dense.
Thus, H is Gδ-dense in the compact group Nλ, and in particular, by Theorem 2.1,

H̃ = Nλ. Therefore, by Theorem 2.2, H is pseudocompact. The group H is zero-
dimensional, being a subspace of the zero-dimensional group Nλ.

Since E is Gδ-dense in the compact group N , in particular, it is dense, and

by Theorem 2.1, N = Ẽ. Thus, wtd(Ẽ) = wtd(N) = E1 ⊆ E, and therefore by
Theorem 4.1, H = Eλ is perfectly totally minimal.

In order to prove that r0(H̃/H) ≥ 2λ, it suffices to show that r0(N/E) ≥ 1, as

H̃/H ∼= (N/E)λ. Letting Δ denote the “diagonal” subgroup of N , that is, the
subgroup generated by d such that dp,α = 1 for every p and α, we prove that
E ∩Δ = {0}. In fact, we show a bit more, namely, that every element in E has
at least one zero coordinate. Let x = y + z ∈ E, where y ∈ E1 and z ∈ E2. By
the definition of E1, there exists q ∈ P such that yq,α = 0 for every α < ω1. Since
z ∈ E2, all but countably many coordinates of z are zero. In particular, there exists
γ < ω1 such that zq,γ = 0. Therefore, xq,γ = yq,γ + zq,γ = 0. Hence, E ∩Δ = {0}
and r0(N/E) ≥ 1, as desired. �

We consider the next lemma to be part of the folklore of pseudocompact abelian
groups (cf. [2, 3.6, 3.10]), and we provide its proof only for the sake of completeness.

Lemma 4.3. Let K1 and K2 be compact topological groups, and let h : K1 → K2

be a surjective homomorphism such that kerh is Gδ-dense in K1. Then the graph
Γh of h is a Gδ-dense subgroup of the product K1 ×K2, and in particular, Γh is
pseudocompact.

Proof. Let B be a non-empty Gδ-subset of K1 ×K2. Without loss of generality,
we may assume that B is of the form B1 ×B2, where Bi is a Gδ-set in Ki. Pick
x2 ∈ B2. Since h is surjective, there is x1 ∈ K1 such that h(x1) = x2. The trans-
late B1x

−1
1 is a non-empty Gδ-set in K1, and thus we may pick x0 ∈ B1x

−1
1 ∩ kerh,

because kerh is Gδ-dense in K1. Since h(x0x1) = h(x1) = x2, one obtains that
(x0x1, x2) ∈ Γh ∩ (B1 × B2). This shows that Γh meets every Gδ-set in K1 ×K2.
Therefore, by Theorem 2.1, K1 ×K2 is the completion of Γh. Hence, by Theo-
rem 2.2, Γh is pseudocompact. �
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A last, auxiliary, tool in the proof of Theorem D′ is the following observation.

Remark 4.4. Let P denote one of the following properties: minimal, totally mini-
mal, perfectly minimal, perfectly totally minimal. If G contains a dense subgroup
with property P, then G also has property P (cf. [31, Theorem 2], [25], [1, Propo-
sitions 1 and 2], [13], [14, 2.5.1, 4.3.3], and [22, 3.21, 3.23]).

Proof of Theorem D′. Put λ = w(C), and let H be the group provided by

Lemma 4.2. Since r0(H̃/H) ≥ 2λ, the quotient H̃/H contains a free abelian group
F of rank 2λ. As |C| ≤ 2λ, one may pick a surjective homomorphism h1 : F → C.
The group C is divisible, because it is compact and connected (cf. [19, 24.25]).

Thus, h1 can be extended to a surjective homomorphism h2 : H̃/H → C.

Let h : H̃ → C denote the composition of h2 with the canonical projection

H̃ → H̃/H. By Theorem 2.2, H is Gδ-dense in H̃, because H is pseudocom-

pact. Thus, kerh is Gδ-dense in H̃ , because H ⊆ kerh. Clearly, h is surjective.

Therefore, by Lemma 4.3, the graph Γh of h is Gδ-dense in the product H̃ × C.
Put G :=Γh+({0}×A). Since Γh is Gδ-dense in H × C and contained in G,

the group G is Gδ-dense too. Thus, by Theorem 2.1, G̃ = H̃ × C, and by Theo-

rem 2.2, G is pseudocompact. As H is zero-dimensional, (G̃)0 = {0} × C, and by

Theorem 2.7(a), q(G) = (G̃)0 ∩G = {0} ×A.
We now check that dimG = dimC. Since G is pseudocompact, by Theorem 2.2,

G̃ = βG, and so dimG = dimβG = dim G̃ (cf. [18, 7.1.17]). As H is zero-dimen-

sional and pseudocompact, by Theorem 2.7(b), dim H̃ = 0. Thus, by Yamanoshita’s

Theorem, dim G̃ = dim H̃ + dimC = dimC (cf. [39], [24, Corollary 2], and [14,
3.3.12]). Therefore, dimG = dimC.

We turn to the minimality properties of G. Suppose that C = Ã. The group G

always contains the product H ×A, but in this case, H ×A is dense in G̃ = H̃ × C,
and thus it is dense in G. Therefore, by Remark 4.4, G inherits all minimality
properties of H ×A. Since H is perfectly totally minimal, the product H ×A
inherits all minimality properties of A. This shows (a)–(d). �

One wonders whether the condition C = Ã is necessary for parts (a)–(d) of The-
orem D′. If the resulting group G is to be totally minimal, then the answer is
positive. Dikranjan showed that if G is a minimal pseudocompact abelian group,

then q(G) is dense in (G̃)0 if and only if G/q(G) is minimal (cf. [10, 1.7]), in which

case (G̃)0 is the completion of q(G). This settles the question for (b) and (d). The
following remark settles the question for (a) and (c).

Remark 4.5. We note (without a proof) that the techniques of Theorem D′ can
also be used to construct, for every positive integer n or n = ω, a perfectly minimal
pseudocompact n-dimensional group G such that G/q(G) is not minimal, and hence

q(G) is not dense in (G̃)0.
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[15] D. Dikranjan, M. Tkačenko, and V. Tkachuk. Topological groups with thin generating sets.
J. Pure Appl. Algebra, 145(2):123–148, 2000. MR1733248 (2000m:22003)
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