SKEW CATEGORIES, SMASH PRODUCT CATEGORIES
AND QUASI-KOSZUL CATEGORIES

DEKE ZHAO

(Communicated by Martin Lorenz)

Abstract. Let \(\mathcal{A} \) be a small additive Krull-Schmidt locally radical finite category over a field \(K \) and let \(G \) be a finite group. We show that if \(\mathcal{A} \) is a free \(G \)-category (resp. \(G \)-graded category), then \(\mathcal{A} \) is quasi-Koszul if and only if the skew (resp. smash product) category \(G \ast \mathcal{A} \) (resp. \(\mathcal{A} \ast G \)) is.

1. Introduction

Koszul algebras were originally defined by Priddy in [9] and have arisen in many contexts: algebraic geometry, Lie theory, combinatorics, non-commutative geometry and topology. There exist numerous generalizing notations of Koszul algebras. For example, Berger [2] introduced the notation of \(N \)-Koszul algebras, and Cassidy and Shelton [3] introduced the notation of \(K_2 \) algebras. Very recently, Martínez-Villa and Solberg [7] introduced the notation of (weakly, quasi-)Koszul categories to obtain a naturally associated Koszul theory for any finite dimensional algebra.

Throughout this paper we will consider small additive categories \(\mathcal{A} \) over a field \(K \), free \(G \)-categories and \(G \)-graded categories where \(G \) is a finite group. For \(G \)-categories and \(G \)-graded categories, Cibils and Marcos [4] defined their skew categories and smash products categories, respectively, which provide a generalized category version of the Cohen-Montgomery Duality Theorem [5]. Inspired by the closeness of the (quasi-)Koszulity of algebras under the skew products and smash products [6, 10], we show that

Theorem. Let \(\mathcal{A} \) be a small additive Krull-Schmidt locally radical finite category over a field \(K \) and let \(G \) be a finite group.

(i) If \(\mathcal{A} \) is a free \(G \)-category, then \(\mathcal{A} \) is quasi-Koszul if and only if the skew category \(G \ast \mathcal{A} \) is.

(ii) If \(\mathcal{A} \) is \(G \)-graded, then \(\mathcal{A} \) is quasi-Koszul if and only if \(\mathcal{A} \) is.

In Section 2 we recall the definitions of \(G \)-category, of skew category, and of \(G \)-graded category and give some basic facts. In Section 3 we recall the definitions of the syzygy of functor and of quasi-Koszul category and prove the Theorem.
2. Skew categories and smash product categories

2.1. Skew categories. A G-category is a K-category \mathcal{A} with firstly a set action of G on the set of objects \mathcal{A}_0 and secondly K-module maps $g : \text{Hom}_\mathcal{A}(X, Y) \to \text{Hom}_\mathcal{A}(gX, gY)$ for each $g \in G$ and $(X, Y) \in \mathcal{A}_0 \times \mathcal{A}_0$ satisfying $g(\varphi \psi) = (g\varphi)(g\psi)$ in case the morphism $\varphi \psi$ is composed in \mathcal{A}. Moreover for $g, h \in G$ and morphism ψ we have $(gh)\psi = g(h\psi)$ and $e\psi = \psi$ where e is the neutral element of G. In other words there is a group homomorphism from G to the group of autofunctors of \mathcal{A}. If the action of G is free on \mathcal{A}_0, we say that \mathcal{A} is a free G-category.

Definition 1 ([3] Definition 2.3]). Let \mathcal{A} be a G-category. The skew category $G \ast \mathcal{A}$ is a K-category with $(G \ast \mathcal{A})_0 = \mathcal{A}_0$ and morphisms $\text{Hom}_{G \ast \mathcal{A}}(X, Y) = \bigoplus_{g \in G} \text{Hom}_\mathcal{A}(gX, Y)$. Composition of morphisms is provided by the composition of \mathcal{A}.

An additive K-category \mathcal{A} is said to be Krull-Schmidt if any object in \mathcal{A} is a finite direct sum of objects with a local endomorphism algebra. Recall that the radical of a category \mathcal{A}, $\text{rad}\mathcal{A}$, is a sub-bifunctor of $\text{Hom}_\mathcal{A}(–, –)$ given by $\text{rad}\mathcal{A}(X, Y) = \{ \psi \in \text{Hom}_\mathcal{A}(X, Y) | \varphi \psi \in \text{rad}(\text{End}_\mathcal{A}(X)) \text{ for all } \varphi \in \text{Hom}_\mathcal{A}(Y, X) \}$. Observe that we also have (see [8] Lemmas 4.1 and 4.2)

$\text{rad}_\mathcal{A}(X, Y) = \bigoplus_{i=1}^m \psi_i$ with $\psi_i \in \text{rad}_\mathcal{A}(X, X_i)$, $\psi_i' \in \text{rad}_\mathcal{A}(X_i, Y)$ for $i = 1, \cdots, m$ and $\psi = \sum_{i=1}^m \psi_i \psi_i'$. Inductively define $\text{rad}_\mathcal{A}^n := \text{rad}_\mathcal{A} \circ \text{rad}_\mathcal{A}^{n-1}$. A K-category \mathcal{A} is called locally radical finite if $\text{rad}_\mathcal{A}(X, Y)/\text{rad}_\mathcal{A}^{n+1}(X, Y)$ is finite dimensional over K for all $X, Y \in \mathcal{A}$ and $i \geq 0$.

Lemma. If $X, Y \in \mathcal{A}$, then $\text{rad}_{G \ast \mathcal{A}}(X, Y) \simeq KG \otimes_K \text{rad}_\mathcal{A}(X, Y)$ and $\text{rad}_{G \ast \mathcal{A}}^n \simeq KG \otimes_K \cdots \otimes_K KG \otimes_K \text{rad}_\mathcal{A}^n$, $n \geq 1$.

Proof. Clearly $\text{rad}_\mathcal{A}(gX, Y) \simeq \text{rad}_\mathcal{A}(X, Y)$ for all $g \in G$. Assume that $\psi = \sum_{g \in G} \psi_g$ and $\varphi = \sum_{h \in G} \varphi_h$ where $\psi_g \in \text{Hom}_\mathcal{A}(gX, Y)$ and $\varphi_h \in \text{Hom}_\mathcal{A}(hY, X)$. Then $\varphi \cdot \psi \in \text{rad}(\text{End}_{G \ast \mathcal{A}}(X))$ if and only if $\varphi_h(h\psi_g) \in \text{rad}(\text{End}_{G \ast \mathcal{A}}(X))$ for all $g, h \in G$ if and only if $h\psi_g \in \text{rad}_{G \ast \mathcal{A}}(gX, Y)$ for all $g \in G$. Thus we obtain that

$\text{rad}_{G \ast \mathcal{A}}(X, Y) = \{ \psi \in \text{Hom}_{G \ast \mathcal{A}}(X, Y) | \varphi \psi \in \text{rad}(\text{End}_{G \ast \mathcal{A}}(X)) \}$

for all $\varphi \in \text{Hom}_{G \ast \mathcal{A}}(X, Y)$

$= \{ \psi = \sum_{g \in G} \psi_g, \psi_g \in \text{Hom}_\mathcal{A}(gX, Y) | \sum_{g, h \in G} \varphi_h \psi_g \in \text{rad}(\text{End}_{G \ast \mathcal{A}}(X)) \}$

for all $\varphi_h \in \text{Hom}_\mathcal{A}(hY, X), h \in G$

$= \{ \psi = \sum_{g \in G} \psi_g, \psi_g \in \text{Hom}_\mathcal{A}(gX, Y) | \varphi_h(h\psi_g) \in \text{rad}(\text{End}_{G \ast \mathcal{A}}(X)) \}$

for all $\varphi_h \in \text{Hom}_\mathcal{A}(hY, X), h \in G$

$= \{ \psi = \sum_{g \in G} \psi_g | \psi_g \in \text{rad}_\mathcal{A}(gX, Y) \}

\simeq KG \otimes_K \text{rad}_\mathcal{A}(gX, Y)$

$= KG \otimes_K \text{rad}_\mathcal{A}(X, Y).$
By induction, we have
\[
\operatorname{rad}_{G, sf}^{n}(X, Y) = \operatorname{rad}_{G, sf} \cdot \operatorname{rad}_{G, sf}^{n-1}(X, Y)
\]
\[
\simeq \operatorname{rad}_{G, sf} \cdot (\bigoplus_{K} \cdots \otimes_{K} K \otimes_{K} \operatorname{rad}_{G, sf}^{n-1}(X, Y))
\]
\[
\simeq \bigoplus_{K} \cdots \otimes_{K} K \otimes_{K} \operatorname{rad}_{G, sf}^{n}(X, Y).
\]
\[\square\]

2.2. Smash product categories. A \(G\)-graded category \(\mathcal{B}\) is a \(K\)-category together with a decomposition of morphisms \(\operatorname{Hom}_{\mathcal{B}}(X, Y) = \bigoplus_{g \in G} \operatorname{Hom}_{\mathcal{B}}(X, Y)_{g}\) such that \(\operatorname{Hom}_{\mathcal{B}}(Y, Z)_{g} \cdot \operatorname{Hom}_{\mathcal{B}}(X, Y)_{h} \subset \operatorname{Hom}_{\mathcal{B}}(X, Z)_{gh}\). In particular, \(\operatorname{Hom}_{\mathcal{B}}(X, X)\) is a \(G\)-graded algebra for each \(X \in \mathcal{B}\).

Definition 2 ([K, Definition 3.1]). Let \(\mathcal{B}\) be a \(G\)-graded category. The **smash product category** \(\mathcal{B} \# G\) is a category with \((\mathcal{B} \# G)_{0} = \mathcal{B}_{0} \times G\) and morphisms \(\operatorname{Hom}_{\mathcal{B} \# G}((X, g), (Y, h)) = \operatorname{Hom}_{\mathcal{B}}(X, Y)_{h^{-1}g}\). Composition of morphisms is provided by the graded composition of \(\mathcal{B}\).

Define a \(G\)-action on \(\mathcal{B} \# G\) by \(g(X, h) = (X, gh)\) and \(gf = f \in \operatorname{Hom}_{\mathcal{B} \# G}((X, gh), (Y, gl))\) if \(f \in \operatorname{Hom}_{\mathcal{B} \# G}((X, h), (Y, l))\). Then the category \(\mathcal{B} \# G\) is a free \(G\)-category and the categories \(G \ast (\mathcal{B} \# G)\) and \(\mathcal{B}\) are equivalent [K, Corollary 3.3]. By the Lemma, we have the following:

Corollary. If \(X, Y \in \mathcal{B}\), then \(KG \otimes_{K} \operatorname{rad}_{\mathcal{B} \# G}((X, g), (Y, h)) = \operatorname{rad}_{\mathcal{B}}(X, Y)\) for all \(g, h \in G\).

3. Quasi-Koszul categories

3.1. Syzygy of functor. Let \(\mathcal{A}\) be an additive Krull-Schmidt locally radical finite \(K\)-category. We denote by \(\operatorname{Mod}\mathcal{A}\) the category of contravariant additive functors from \(\mathcal{A}\) to the category \(\operatorname{Mod}K\) of \(K\)-vector spaces with natural transforms as morphisms.

A family of objects \(\{F(Y_{i})|Y_{i} \in \mathcal{A}, i \in I\}\) is said to be a **family of generators** for \(F \in \operatorname{Mod}\mathcal{A}\) if for very \(Y \in \mathcal{A}\),

\[
F(Y) = \sum_{i \in I} F(\phi_{i})(F(Y_{i}))
\]

where all but a finite number of \(\phi_{i} : Y \rightarrow Y_{i}\) are zero, and \(F \in \operatorname{Mod}\mathcal{A}\) is **finitely generated** if it has a finite set of generator.

Denote by \(\operatorname{mod}\mathcal{A}\) the full subcategory of \(\operatorname{Mod}\mathcal{A}\) consisting of all finitely generated contravariant additive functors of \(\operatorname{Mod}\mathcal{A}\). Then the category \(\operatorname{mod}\mathcal{A}\) has, by [K, Corollary 4.13], minimal projective resolution. This gives rise to one-to-one correspondence between the indecomposable objects in \(\mathcal{A}\) and the simple objects in \(\operatorname{Mod}\mathcal{A}\), where an indecomposable object \(X\) in \(\mathcal{A}\) gives rise to the simple object \(S_{X} := \operatorname{Hom}_{\mathcal{A}}(-, X)/\operatorname{rad}_{\mathcal{A}}(-, X)\) in \(\operatorname{Mod}\mathcal{A}\). Furthermore Yoneda’s Lemma implies that an \(\mathcal{A}\)-module is projective in \(\operatorname{mod}\mathcal{A}\) if and only if it is isomorphic to \(\operatorname{Hom}_{\mathcal{A}}(-, X)\) for some \(X \in \mathcal{A}\).

Definition 3. The **syzygy functor** \(\Omega(F)\) of \(F \in \operatorname{Mod}\mathcal{A}\) is defined by the exact sequence

\[
0 \rightarrow \Omega(F) \rightarrow \operatorname{Hom}_{\mathcal{A}}(-, X) \rightarrow F \rightarrow 0
\]
for some $X \in \mathcal{A}$. Inductively, we can define the n-th syzygy functor $\Omega^n(\mathcal{F})$ of \mathcal{F}.

Remark. By Freyd’s Theorem (see e.g. [3] p. 16, Theorem 3.1) $\text{Mod}\mathcal{A}$ is an abelian category with coproduct and a faithful set of small projectives. Thus $\Omega(\mathcal{F}) : \mathcal{A} \to \text{Mod}K, M \mapsto \Omega(\mathcal{F})(M)$ is a contravariant functor for any $\mathcal{F} \in \text{mod}\mathcal{A}$.

3.2. Quasi-Koszul categories

Recall that an ideal in the category \mathcal{A} is a sub-bifunctor of the Hom-functor. For two ideals \mathcal{I} and \mathcal{J} we define in a natural way inclusion, intersection and product. In particular the product of two ideals \mathcal{I} and \mathcal{J} is given by

$$\mathcal{I}\mathcal{J}(X, Z) = \{ \psi \in \text{Hom}_\mathcal{A}(X, Z) | \psi \}$$

$$= \sum_{i=1}^{n} \varphi_i \phi_i, \varphi_i \in \text{Hom}_\mathcal{A}(X, Y_i), \varphi \in \text{Hom}_\mathcal{A}(Y_i, Z), Y_i \in \mathcal{A} \}$$

for $X, Z \in \mathcal{A}$.

For an n-fold product of an ideal \mathcal{I} with itself we write \mathcal{I}^n. Let \mathcal{I} be an ideal in the category. For a contravariant functor $\mathcal{F} : \mathcal{A} \to \text{Mod}K$ define $\mathcal{IF} : \mathcal{A} \to \text{Mod}K$ as the subfunctor of \mathcal{F} given by

$$\mathcal{IF}(M) = \sum_{X \in \mathcal{A}} \mathcal{F}(\mathcal{I}(M, X))$$

for all objects $M \in \mathcal{A}$. Clearly $\mathcal{IF} \subseteq \mathcal{F}$ for any ideal \mathcal{I} and any contravariant functor \mathcal{F} in $\text{Mod}\mathcal{A}$.

Definition 4 (II §5). A contravariant functor \mathcal{F} in $\text{Mod}\mathcal{A}$ is quasi-Koszul if it has a finitely generated projective resolution

$$\cdots \to \text{Hom}_\mathcal{A}(-, X_i) \to \cdots \to \text{Hom}_\mathcal{A}(-, X_0) \to \mathcal{F} \to 0$$

and $\text{rad}_\mathcal{A}^i(\mathcal{F}) = \text{rad}_\mathcal{A}^2(-, X_{i-1}) \cap \Omega^i(\mathcal{F})$ for all $i \geq 1$.

The category \mathcal{A} is quasi-Koszul if every simple functor in $\text{Mod}\mathcal{A}$ is quasi-Koszul.

3.3. Proof of Theorem

Since the categories $G \ast (\mathcal{A} \# G)$ and \mathcal{A} are equivalent, it is sufficient to prove (i). Assume that \mathcal{A} is quasi-Koszul and \mathcal{F} is a simple contravariant functor in $\text{Mod}\mathcal{A}$ having a finitely generated projective resolution

$$\cdots \to \text{Hom}_\mathcal{A}(-, X_i) \to \cdots \to \text{Hom}_\mathcal{A}(-, X_0) \to \mathcal{F} \to 0$$

and that $\text{rad}_\mathcal{A}^i(\mathcal{F}) = \text{rad}_\mathcal{A}^2(-, X_{i-1}) \cap \Omega^i(\mathcal{F})$ for all $i \geq 1$.

Suppose that $\mathcal{F} = \text{Hom}_\mathcal{A}(-, X)/\text{rad}_\mathcal{A}(-, X)$ for some indecomposable object $X \in \mathcal{A}$ and define

$$\mathcal{F}^* := \text{Hom}_{G \ast \mathcal{A}}(-, X)/\text{rad}_{G \ast \mathcal{A}}(-, X).$$

Then \mathcal{F}^* is a simple contravariant functor in $\text{Mod}G \ast \mathcal{A}$, and every simple functor in $\text{Mod}G \ast \mathcal{A}$ is of this form, which has a finitely generated projective resolution

$$\cdots \to \text{Hom}_{G \ast \mathcal{A}}(-, X_i) \to \cdots \to \text{Hom}_{G \ast \mathcal{A}}(-, X_0) \to \mathcal{F}^* \to 0.$$

Thus it is enough to show that

$$\text{(i) } \text{ rad}_\mathcal{A}^i(\mathcal{F}) = \text{ rad}_\mathcal{A}^2(-, X_{i-1}) \cap \Omega^i(\mathcal{F})$$

if and only if $\text{ rad}_{G \ast \mathcal{A}}^i(\mathcal{F}^*) = \text{ rad}_{G \ast \mathcal{A}}^2(-, X_{i-1}) \cap \Omega^i(\mathcal{F}^*)$.

For any object $M \in \mathcal{A}$ and $i \geq 1$, we have
\[
\text{rad}_{G_{i,\mathcal{A}}}(\Omega_i^i(F^*)(M)) = \sum_{Y \in \mathcal{A}} \Omega_i^i(F^*)(\text{rad}_{G_{i,\mathcal{A}}}(M, Y)) = \sum_{Y \in \mathcal{A}} \Omega_i^i(F^*)(KG \otimes_K \text{rad}_{\mathcal{A}}(M, Y)) = \sum_{Y \in \mathcal{A}} KS \otimes_K KS \otimes_K \Omega_i^i(F)(\text{rad}_{\mathcal{A}}(M, Y)) = KG \otimes_K KG \otimes_K \text{rad}_{\mathcal{A}}(\Omega_i^i(F)(M));
\]
that is, for all $i \geq 1$,
\[
(\text{I}) \quad \text{rad}_{G_{i,\mathcal{A}}}(\Omega_i^i(F^*)) = KG \otimes_K KG \otimes_K \text{rad}_{\mathcal{A}}\Omega_i^i(F).
\]
By the Lemma, we have
\[
\text{rad}_{G_{i,\mathcal{A}}}(\Omega_i^i(F^*)) = KG \otimes_K KG \otimes_K \text{rad}_{\mathcal{A}}(\Omega_i^i(F^*)) \quad \text{for all } i \geq 1.
\]
Since $\Omega_i^i(F^*) \subseteq \text{rad}_{G_{i,\mathcal{A}}} \text{Hom}_{G_{i,\mathcal{A}}}(\cdot, X_{i-1})$ for all $i \geq 1$,
\[
\Omega_i^i(F^*)(M) \subseteq \text{rad}_{G_{i,\mathcal{A}}} \text{Hom}_{G_{i,\mathcal{A}}}(\cdot, X_{i-1})
\]
\[
= \sum_{Y \in \mathcal{A}} \text{Hom}_{G_{i,\mathcal{A}}}(\cdot, X_{i-1})\text{rad}_{G_{i,\mathcal{A}}}(M, Y)
\]
\[
= KG \otimes_K KG \otimes_K \text{Hom}_{\mathcal{A}}(\cdot, X_{i-1})\text{rad}_{\mathcal{A}}(M, Y)
\]
\[
= KG \otimes_K KG \otimes_K \text{rad}_{\mathcal{A}}\text{Hom}_{\mathcal{A}}(\cdot, X_{i-1})(M).
\]
On the other hand, note that $\Omega_i^i(F) \subseteq \text{rad}_{\mathcal{A}}\text{Hom}_{\mathcal{A}}(\cdot, X_{i-1})$. This yields that $\Omega_i^i(F^*) = KG \otimes_K KG \otimes_K \Omega_i^i(F)$. Hence
\[
(\text{II}) \quad \text{rad}_{G_{i,\mathcal{A}}}(\Omega_i^i(F^*)) = KG \otimes_K KG \otimes_K \text{rad}_{\mathcal{A}}^{\mathcal{A}}(\cdot, X_{i-1}) \cap \Omega_i^i(F).
\]
Now (\ast) follows by combining (I) and (II). This completes the proof. \hfill \square

References

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

E-mail address: deke@amss.ac.cn

Current address: School of Applied Mathematics, Beijing Normal University at Zhuhai, Zhuhai, 519087, People’s Republic of China_