ON GEODESICS OF FINSLER METRICS V IA NAVIGATION PROBLEM

LIBING HUANG AND XIAOHUAN MO

(Communicated by Jianguo Cao)

Abstract. This paper is devoted to a study of geodesics of Finsler metrics via Zermelo navigation. We give a geometric description of the geodesics of the Finsler metric produced from any Finsler metric and any homothetic field in terms of navigation representation, generalizing a result previously only known in the case of Randers metrics with constant S-curvature. As its application, we present explicitly the geodesics of the Funk metric on a strongly convex domain.

1. Introduction

A smooth curve in a Finsler manifold is called a geodesic if it is locally the shortest path connecting any two nearby points on this curve (cf. [21]). Recently, R. Bryant [5] showed that a Finsler metric on \(S^2 \) of constant flag curvature \(K = 1 \) with reversible geodesics is actually a Riemannian one. M. Crampin’s result tells us that if a Randers metric \(\alpha + \beta \) has reversible geodesics, then \(\beta \) is closed [8]. C. Robles investigated geodesics of Randers metrics of constant S-curvature [17]. Randers metrics of constant flag curvature (or quadratic Riemann curvature) have constant S-curvature [3, 10]. In terms of the navigation representation, they are produced from Riemannian metrics and homothetic vector fields [13, 16, 22, 23]. In fact, C. Robles classified geodesics in Randers manifolds of constant flag curvature [17].

The aim of this paper is to give a geometric description of the geodesics of the Finsler metric \(\tilde{F} \) obtained from an arbitrary Finsler metric \(F \) and an arbitrary homothetic field \(V \) of \(F \) in terms of the navigation representation. Precisely we show the following:

Theorem 1.1. Let \(F = F(x, y) \) be a Finsler metric on a manifold \(M \) and let \(V \) be a vector field on \(M \) with \(F(x, V_x) < 1 \). Suppose that \(V \) is homothetic with dilation \(c \). Let \(\tilde{F} = \tilde{F}(x, y) \) denote the Finsler metric on \(M \) defined in (3.20). Then the geodesics of \(\tilde{F} \) are given by \(\psi_t (\gamma(a(t))) \) where \(\psi_t \) is the flow of \(-V; \gamma(t)\)
is a geodesic of F and $a(t)$ is defined by

$$a(t) := \begin{cases} \frac{e^{2ct} - 1}{2c}, & \text{if } c \neq 0; \\ t, & \text{if } c = 0. \end{cases}$$

Our result generalizes a theorem previously only known in the case of Randers metrics with constant S-curvature [17]. As its application, we represent explicitly the geodesics of the Funk metric on a strongly convex domain (see Proposition 4.1).

Recall that a vector field V on a Finsler manifold (M, F) is a homothetic field of F with dilation c if the corresponding flow ϕ_t is homothetic with dilation c. In particular V is called a Killing field if $c = 0$.

It is worth mentioning our recent result that for a non-Killing homothetic field V, the navigation representation has the flag curvature decreasing property [15].

For interesting results of geodesics on Finsler spheres, we refer the reader to [1, 9, 11].

2. Preliminaries

Let us recall firstly the definition of the Finsler metrics.

Definition 2.1 ([2]). Let M be a finite-dimensional manifold. A function $F : TM \to [0, +\infty)$ is a Finsler metric if it satisfies

(a) F is C^∞ on $TM \setminus \{0\}$;
(b) $F(x, \lambda y) = \lambda F(x, y)$ for all $y \in T_xM$, $x \in M$ and $\lambda > 0$;
(c) for every $y \in T_xM \setminus \{0\}$, the quadratic form

$$g_{x,y}(u, v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{t = s = 0}, \quad \forall u, v \in T_xM$$

is positive definite.

In this case, (M, F) is called a Finsler manifold. Let SM be the projective sphere bundle of M, obtained from TM by identifying nonzero vectors which differ from each other by a positive multiplicative factor. Each geometrical quantity on TM, homogeneous of degree zero, is considered to sit on SM. Define

$$\omega := F_y^i dx^i.$$

Then ω is a differential form on SM. It is easy to verify that

$$\omega \wedge (d\omega)^{n-1} \neq 0, \quad n = \dim M$$

(cf. [3]), i.e., that ω defines a contact structure on SM. This form ω is known in the calculus of variations as the Hilbert form.

Since ω is a contact form, there exists a unique vector field X on SM that satisfies

$$\omega(X) = 1, \quad X.(d\omega) = 0.$$

This vector field X is known as the Reeb vector field [4]. It is easy to see that a C^∞-curve is a (constant Finslerian speed) geodesic if its canonical lift in SM is an integral curve of the Reeb vector field X [4].

Every vector $y \in T_xM \setminus \{0\}$ uniquely determines a covector $p \in T_y^*M \setminus \{0\}$ by

$$p(u) := \frac{1}{2} \frac{d}{dt} (F^2(x, y + tu))|_{t = 0}, \quad u \in T_xM.$$

The resulting map $L^F_x : y \in T_xM \to p \in T_y^*M$ is called the Legendre transformation at x. The family $L^F := \{L^F_x \mid x \in M\}$ is called the Legendre transformation.
Define a non-negative scalar function \(H = H(x, p) \) by

\[
H(x, p) := \max_{y \in T_x M \setminus \{0\}} \frac{p(y)}{F(x, y)}.
\]

The function \(H \) is \(C^\infty \) on \(T^*M \setminus \{0\} \) and \(H_x := H|_{T^*_x M} \) is a Minkowski norm on \(T^*_x M \) for \(x \in M \). Such a function is called a Cartan metric \([12, 15]\) (co-Finsler metric in an alternative terminology \([18, 19]\)). The pair \((M, H)\) is called a Cartan manifold.

Every covector \(p \in T^*_x M \setminus \{0\} \) uniquely determines a vector \(y \in T_x M \setminus \{0\} \) by

\[
q(y) := \frac{1}{2} \frac{d}{dt} \left(H^2(x, p + tq) \right)_{|t=0}, \quad q \in T^*_x M.
\]

The resulting map \(L^F_x : p \in T^*_x M \to y \in T_x M \) is called the inverse Legendre transformation at \(x \). Indeed \(L^F_x \) and \(L^{F*}_x \) are inverses of each other. Moreover, they preserve the Minkowski norms

\[
H(x, p) = F(x, (L^{F*}_x)^{-1}p).
\]

Recently, one of the important approaches in discussing the Finsler metric is the (Zermelo) navigation problem. For instance, Bao-Robles-Shen have classified Randers metrics of constant flag curvature via the navigation problem in a Riemannian manifold \([3]\).

The main technique of the navigation problem is described as follows. Given a Finsler metric \(F \) and a vector field \(V \) with \(F(x, V_x) < 1 \), define a new Finsler metric \(\tilde{F} \) by

\[
F(x, \frac{y}{F(x, y)} + V_x) = 1, \quad \forall x \in M, \ y \in T_x M.
\]

A (local) flow (a local one-parameter group in an alternative terminology) on a manifold \(M \) is a map \(\phi : (-\epsilon, \epsilon) \times M \to M \), also denoted by \(\phi_t := \phi(t, \cdot) \), satisfying

- \(\phi_0 = \text{id} : M \to M; \)
- \(\phi_s \circ \phi_t = \phi_{s+t} \) for any \(s, t \in (-\epsilon, \epsilon) \) with \(s + t \in (-\epsilon, \epsilon) \).

Hence, the lift of a flow \(\phi_t \) on \(M \) is a flow \(\hat{\phi}_t \) on \(T^*M \),

\[
\hat{\phi}_t(x, p) := (\phi_t(x), (\phi^*_t)^{-1}(p)).
\]

By the relationship between vector fields and flows, \((2.2)\) induces a natural way to lift a vector field \(V \) on \(M \) to a vector field \(X^*_V \) on \(T^*M \).

A vector field \(V \) on a Finsler manifold \((M, F) \) is called homothetic with dilation \(c \) if its flow \(\phi_t \) satisfies

\[
F(\phi_t(x), \phi_t(x)) = e^{2ct} F(x, y), \quad \forall x \in M, \ y \in T_x M.
\]

Similarly, a vector field \(V \) on a Cartan manifold \((M, H) \) is called homothetic with dilation \(c \) if its flow \(\phi_t \) satisfies

\[
H(\phi_t(x), (\phi^*_t)^{-1}(p)) = e^{-2ct} H(x, p), \quad \forall x \in M, \ p \in T^*_x M.
\]

Lemma 2.2. Let \(V \) be a homothetic field on a Finsler manifold \((M, F) \) with dilation \(c \) and \(H \) its Cartan metric defined by \((2.1)\). Then \(V \) is a homothetic field of \(H \) with dilation \(c \).
Proof. By using (2.1) and (2.3) we have

\[H(\phi_t(x), (\phi_t^*)^{-1}(p)) = \max_{\tilde{y} \in T_0 M \setminus \{0\}} \frac{\left((\phi_t^*)^{-1}(\tilde{y}) \right) (\tilde{y})}{F(\phi_t(x), \tilde{y})} \]

\[= \max_{\tilde{y} \in T_0 M \setminus \{0\}} \frac{p((\phi_t^*)^{-1}(\tilde{y}))}{F(\phi_t(x), \tilde{y})} \]

\[= \max_{y \in T_x M \setminus \{0\}} \frac{p(y)}{F(\phi_t(x), y)} \]

\[= e^{-2ct} \max_{y \in T_x M \setminus \{0\}} \frac{p(y)}{e^{2ct}F(x, y)} = e^{-2ct}H(x, p), \]

where \(y := (\phi_t^*)^{-1}(\tilde{y}) \). It follows that \(V \) is a homothetic field of \(H \) with dilation \(c \). \(\square \)

3. Geodesics of a Finsler metric via navigation problem

In this section, we give a geometric description of geodesics of Finsler metrics via the homothetic navigation problem in a Finsler manifold. First, we show the following:

Lemma 3.1. Let \(N \) be a manifold, and let \(V \) and \(W \) be vector fields on \(N \) that satisfy

\[[V, W] = -cV \]

for some constant \(c \). Let \(\phi_t \) and \(\psi_t \) be local 1-parameter groups of \(V \) and \(W \) respectively. Then \(\psi_t \circ \phi_{a(t)} \) is a local 1-parameter group of the vector field \(V + W \), where \(a(t) \) is defined by

\[a(t) := \begin{cases} \frac{e^ct}{c}, & \text{if } c \neq 0; \\ t, & \text{if } c = 0. \end{cases} \]

Proof. Direct calculations yield

\[\frac{da}{dt} = e^{ct}. \]

Since \(V \) is the induced vector field from \(\phi \),

\[\frac{d}{dt} \phi_t(x) \big|_{t=t_0} = V_{\phi_{t_0}(x)}. \]

Let \(\eta_t := \phi_{a(t)}, u := a(t) \). By using (3.2) and (3.3) we obtain

\[\frac{d}{dt} [\eta_t(x)]_{t=s} = \frac{d\phi_u}{du} \big|_{u=a(s)} \frac{da}{dt} \big|_{t=s} = e^{cs}V_{\phi_{a(s)}(x)} = e^{cs}V_{\eta_s(x)}. \]

From (3.1), one obtains \([W, V] = cV\). It follows that

\[c\psi_{ts}V = \psi_{ts}(cV) \]

\[= \psi_{ts}[W, V] \]

\[= [\psi_{ts}W, \psi_{ts}V] = [W, \psi_{ts}V]. \]
This gives
\[c\psi_t \cdot V_p(f) = [W, \psi_t \cdot V]_p f \]
\[= ([CW, \psi_t \cdot V])_p f \]
\[= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[\psi_t \cdot V - (\psi_t + \Delta t)_* V \right]_p f = -\frac{d}{dt} [\psi_t \cdot V]_p f \]
for a point \(p \in N \) and a function \(f \in C^\infty(N) \). We set
\[y(t) := \psi_t \cdot V_p(f). \]
Substituting (3.7) into (3.6) yields
\[\frac{dy}{dt} = -cy. \]
Solving (3.8), we get
\[y = C_1 e^{-ct}. \]
Plugging (3.7) into (3.9) yields
\[(\psi_t)_* V = e^{-ct} V. \]
By using (3.4), for any function \(f \in C^\infty(N) \) we have
\[\frac{d}{dt} [\psi_t \circ \eta_t(x)]_{t=s} = \lim_{\Delta s \to 0} \frac{1}{\Delta s} \left[f \circ \psi_{s+\Delta s} \circ \eta_{s+\Delta s}(x) - f \circ \psi_s \circ \eta_s(x) \right] \]
\[= \lim_{\Delta s \to 0} \frac{1}{\Delta s} \left[f \circ \psi_{s+\Delta s} \circ \eta_{s+\Delta s}(x) - f \circ \psi_s \circ \eta_{s+\Delta s}(x) \right] \]
\[+ \lim_{\Delta s \to 0} \frac{1}{\Delta s} \left[f \circ \psi_s \circ \eta_{s+\Delta s}(x) - f \circ \psi_s \circ \eta_s(x) \right] \]
\[= \lim_{\Delta s \to 0} \frac{f \circ \psi_{s+\Delta s} - f \circ \psi_s}{\Delta s} \left(\eta_{s+\Delta s}(x) \right) \]
\[+ (f \circ \psi_s)_* \left(\lim_{\Delta s \to 0} \frac{\eta_{s+\Delta s}(x) - \eta_s(x)}{\Delta s} \right) \]
\[= W_{\psi_s} \circ \eta_s(x) f + \psi_s (e^{cs} V |_{\eta_s(x)}) f. \]
It follows that
\[\frac{d}{dt} [\psi_t \circ \eta_t(x)]_{t=s} = W_{\psi_s} \circ \eta_s(x) + \psi_s (e^{cs} V |_{\eta_s(x)}). \]
By using (3.11) we have
\[\psi_s (e^{cs} V |_{\eta_s(x)}) = e^{cs} \psi_s (V |_{\eta_s(x)}) = e^{cs} e^{-cs} V_{\psi_s \circ \eta_s(x)} = V_{\psi_s \circ \eta_s(x)}. \]
Plugging this into (3.12) yields
\[\frac{d}{dt} [\psi_t \circ \eta_t(x)]_{t=s} = W_{\psi_s \circ \eta_s(x)} + V_{\psi_s \circ \eta_s(x)} = (W + V)_{\psi_s \circ \eta_s(x)}. \]
It follows that \(\psi_t \circ \eta_t \) is a local 1-parameter group of the vector field \(V + W \). \(\square \)
Lemma 3.2. For a homothetic field V on a Cartan manifold (M, H) with dilation c, we have

\[(3.13) \quad [X^\flat, X^*_V] = 2cX^\flat,\]

where $X^\flat = (L^F)_*X$ and X^*_V is the lift of V to T^*M.

Proof. In natural coordinates, we have

\[(3.14) \quad X^*_V = v^i \frac{\partial}{\partial x^i} - p_j \frac{\partial v^j}{\partial x^i} \frac{\partial}{\partial p_i},\]

where $V = v^i \frac{\partial}{\partial x^i}$ [15 (5.3)]. Note that V is homothetic with respect to H with dilation c. Differentiating (2.4) with respect to t at $t = 0$ yields

\[(3.15) \quad X^*_V(H) = -2cH.\]

By using (3.14), we have

\[(3.16) \quad X^*_V(H) = v^i \frac{\partial H}{\partial x^i} - p_j \frac{\partial v^j}{\partial x^i} \frac{\partial H}{\partial p_i} = -2cH.\]

Differentiating (3.16) with respect to p_k gives

\[(3.17) \quad v^i \frac{\partial^2 H}{\partial x^i \partial p_k} - \sum_i p_j \frac{\partial v^j}{\partial x^i} \frac{\partial^2 H}{\partial p_i \partial p_k} = -2c \frac{\partial H}{\partial p_k}.\]

Differentiating (3.16) with respect to x^k yields

\[(3.18) \quad \frac{\partial v^i}{\partial x^k} \frac{\partial H}{\partial x^i} + v^i \frac{\partial^2 H}{\partial x^i \partial x^k} - p_j \frac{\partial v^j}{\partial x^i} \frac{\partial^2 H}{\partial p_i \partial x^k} = -2c \frac{\partial H}{\partial x^k}.\]

By Lemma 4.5 in [15], X^\flat is the Hamiltonian vector field for H. Hence it has the local expression

\[(3.19) \quad X^\flat = \frac{\partial H}{\partial p_i} \frac{\partial}{\partial x^i} - \frac{\partial H}{\partial x^i} \frac{\partial}{\partial p_i}.\]

It follows from (3.14) and (3.19) that

\[
[X^\flat, X^*_V] = \left[\frac{\partial H}{\partial p_i} \frac{\partial}{\partial x^i}, v^j \frac{\partial}{\partial x^j}, p_k \frac{\partial v^k}{\partial x^j} \frac{\partial}{\partial p_j} \right] = \left[\frac{\partial H}{\partial p_i} \frac{\partial}{\partial x^i}, v^j \frac{\partial}{\partial x^j}, p_k \frac{\partial v^k}{\partial x^j} \frac{\partial}{\partial p_j} \right] \sum_i \frac{\partial v^j}{\partial x^i} \frac{\partial}{\partial p_i} \left[\frac{\partial H}{\partial x^i} \frac{\partial}{\partial p_j} \right] = \left[\frac{\partial H}{\partial p_i} \frac{\partial}{\partial x^i}, p_k \frac{\partial v^k}{\partial x^j} \frac{\partial}{\partial p_j} \right].
\]

Recall that

\[[fX, gY] = f(Xg)Y - g(Yf)X + fg[X, Y]. \]
for any vector fields X, Y and functions f, g. It follows that

$$[X^b, X_V] = \frac{\partial H}{\partial p_i} \frac{\partial^2 H}{\partial x^i \partial x^j} - v^j \frac{\partial^2 H}{\partial x^i \partial x^j} + v^j \frac{\partial^2 H}{\partial x^i \partial p_l} \frac{\partial}{\partial p_i}$$

\square

Proof of Theorem 1.1. Let V be a homothetic field on a Finsler manifold (M, F) with dilation c and let X be the Reeb vector field. Applying the Legendre transformation, we obtain a Cartan metric $H(x, p)$. From Lemma 2.2, V is a homothetic field of (M, H) with dilation c. By Lemma 3.2 and (3.14), we have $[X^b, X_{-V}^b] = -2cX^b$. Let ϕ_t and $\hat{\psi}_t$ be local 1-parameter groups of X^b and X_{-V}^b respectively. By using (3.14) we get $X^b + X_{-V}^b = X^b - X_{-V}^b$. Taking this together with Lemma 3.1 we obtain that $\psi_t \circ \phi_{a(t)}$ is a local 1-parameter group of $X^b - X_{-V}^b$, where

$$a(t) = \begin{cases} \frac{e^{ct} - 1}{2c}, & \text{if } c \neq 0; \\ t, & \text{if } c = 0. \end{cases}$$

Recall that a navigation problem makes use of a Finsler metric F and a vector field V with $F(x, V_x) < 1$ and produces a new Finsler metric \tilde{F} by solving the equation

$$F(x, y + \tilde{F}(x, y)V) = \tilde{F}(x, y).$$

Let \tilde{X} be the Reeb vector field of \tilde{F} and $\tilde{X}^b = (L_{\tilde{F}})_* \tilde{X}$. By Lemma 6.2 in [15], we have

$$\tilde{X}^b = X^b - X_{-V}^b.$$

It follows that $\hat{\psi}_t \circ \phi_{a(t)}$ is a local 1-parameter group of \tilde{X}^b.

Since $L_{\tilde{F}}(x, y) = (x, L^F_x(y))$, we see that any geodesic of F is precisely the projection of an integral curve of X^b. Similarly, a geodesic of \tilde{F} is precisely the projection of an integral curve of \tilde{X}^b. Note that

$$\hat{\psi}_t(x, p) = (\psi_t(x), (\psi_t^* p)^{-1}(p)),$$

where ψ_t is the flow produced by $-V$.

Let $\pi : T^* \setminus \{0\} \rightarrow M$ be the natural projection. It follows that

$$\pi \circ \hat{\psi}_t(x, p) = \pi(\psi_t(x), (\psi_t^* p)^{-1}(p)) = \psi_t(x) = \psi_t \circ \pi(x, p)$$
for any $x \in M$ and $p \in T_xM \setminus \{0\}$. Hence we have
\begin{equation}
\pi \circ \hat{\psi}_t = \psi_t \circ \pi.
\end{equation}

It follows that
\[\pi \circ \hat{\psi}_t \circ \phi_a(t) = \psi_t \circ \pi \circ \phi_a(t) = \psi_t (\gamma_a(t)), \]
where $\gamma(t) := \pi(\phi_t(x))$. Thus we have proved Theorem 1.1.

Remark 3.1. The reader should note that the navigation problem adopted here differs from those of C. Robles and Z. Shen [17, 20], where the navigation problem is defined by
\[F(x, y) - V = 1; \]
i.e., the \hat{F} we define with (F, V) is precisely the \hat{F} that Shen defines with $(F, -V)$.

4. Geodesics of Funk metrics on convex domains

In this section we are going to represent explicitly the geodesics of the Funk metric on a strongly convex domain.

Given a Minkowski norm $\varphi : \mathbb{E} \to \mathbb{R}$ on a vector space \mathbb{E}, one can construct $\Omega := \{ v \in \mathbb{E} | \varphi(v) < 1 \}$, $T_\Omega \Omega \simeq \mathbb{E}$. A domain Ω in \mathbb{E} defined by a Minkowski norm φ is called a strongly convex domain [19]. Thus $(\Omega, F(x, y))$ is a Minkowski manifold, where $F(x, y) := \varphi(y)$. For each $x \in \Omega$, identify $T_x \Omega$ with \mathbb{E}. Thus $V_x := x$ is a radical vector field on Ω satisfying $F(x, V_x) = \varphi(x) < 1$. Moreover V is a homothetic field of F with dilation $c = \frac{1}{2}$ [15]. Define a 1-parameter transformation ψ_t on Ω by
\[\psi_t(x) = e^{-t}x. \]
Note that $T_{\psi_t(x)} \Omega \simeq \mathbb{E}$ for any t. It is easy to see that
\[\psi_t(y) = e^{-t}y, \quad \text{for } \forall \, y \in T_x \Omega. \]
Thus we have
\[F(\psi_t(x), \psi_t(y)) = \varphi(\psi_t(y)) = \varphi(e^{-t}y) = e^{-t} \varphi(y) = e^{-t}F(x, y) \]
for any $(x, y) \in T\Omega$. It follows that φ_t is homothetic. A direct calculation yields
\[\frac{d\psi_t(x)}{dt} \bigg|_{t=0} = -x = -V_x. \]
Thus ψ_t is the flow of the vector field $-V$. By using the Minkowski metric F and the homothetic field V, we produce a new Finsler metric \hat{F} in terms of the navigation problem. \hat{F} is called the Funk metric on a strongly convex domain Ω (cf. [17 Example 3.4.3]).

Since F is Minkowskian, it is locally projectively flat. This implies that the unit speed geodesic through x with tangent vector $y(\neq 0)$ is $\gamma(t) := x + \frac{t}{\varphi(y)} y$. Note that V is a homothetic field with dilation $c = \frac{1}{2}$. We have
\[a(t) = e^t - 1 \]
(see Theorem \[1\]). It follows that

\[
\psi_t(\gamma(a(t))) = e^{-t} \left[x + \frac{e^t - 1}{\varphi(y)} y \right].
\]

By Theorem 1.1, we have the following.

Proposition 4.1. Let \(\varphi : E \to \mathbb{R} \) be a Minkowski norm and \(\Omega \) its strongly convex domain. Assume that \(F \) is the Funk metric on \(\Omega \) defined by

\[
\varphi\left(\frac{y}{F(x, y)} + x\right) = 1.
\]

Then the geodesics of \(F \) are given by

\[
e^{-t} \left[x + \frac{e^t - 1}{\varphi(y)} y \right].
\]

REFERENCES

14. X. Mo, *On some Finsler metrics of constant (or scalar) flag curvature*, accepted for publication in Houston Journal of Mathematics.

School of Mathematical Sciences, Nankai University, Tianjin 300071, People’s Republic of China

E-mail address: huanglb@nankai.edu.cn

Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China

E-mail address: moxh@pku.edu.cn