Resonance for the isothermal system of isentropic gas dynamics
Author:
Yunguang Lu
Journal:
Proc. Amer. Math. Soc. 139 (2011), 28212826
MSC (2010):
Primary 35L65, 76N10
Published electronically:
February 8, 2011
MathSciNet review:
2801623
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we remove the restriction or in the paper ``Existence of Solutions to Hyperbolic Conservation Laws with a Source'' (Commun. Math. Phys., 187 (1997), 327340) and obtain the existence of solutions for the resonant, isothermal system of isentropic gas dynamics.
 [Di]
Ronald
J. DiPerna, Convergence of the viscosity method for isentropic gas
dynamics, Comm. Math. Phys. 91 (1983), no. 1,
1–30. MR
719807 (85i:35118)
 [DW]
Xia
Xi Ding and Jing
Hua Wang, Global solutions for a semilinear parabolic system,
Acta Math. Sci. (English Ed.) 3 (1983), no. 4,
397–414. MR
812546 (86k:35058)
 [EGM]
Pedro
Embid, Jonathan
Goodman, and Andrew
Majda, Multiple steady states for 1D transonic flow, SIAM J.
Sci. Statist. Comput. 5 (1984), no. 1, 21–41.
MR 731879
(86a:76029), http://dx.doi.org/10.1137/0905002
 [Gl]
James
Glimm, Solutions in the large for nonlinear hyperbolic systems of
equations, Comm. Pure Appl. Math. 18 (1965),
697–715. MR 0194770
(33 #2976)
 [GMP]
James
Glimm, Guillermo
Marshall, and Bradley
Plohr, A generalized Riemann problem for quasionedimensional gas
flows, Adv. in Appl. Math. 5 (1984), no. 1,
1–30. MR
736548 (85e:76041), http://dx.doi.org/10.1016/01968858(84)900022
 [HW]
F.M Huang and Z. Wang, Convergence of viscosity solutions for isentropic gas dynamics, SIAM J. Math. Anal., 34 (2003), 595610. (1984), 130.
 [IT]
Eli
Isaacson and Blake
Temple, Nonlinear resonance in systems of conservation laws,
SIAM J. Appl. Math. 52 (1992), no. 5,
1260–1278. MR 1182123
(93f:35140), http://dx.doi.org/10.1137/0152073
 [KL]
Christian
Klingenberg and Yunguang
Lu, Existence of solutions to hyperbolic conservation laws with a
source, Comm. Math. Phys. 187 (1997), no. 2,
327–340. MR 1463831
(98d:35139), http://dx.doi.org/10.1007/s002200050138
 [Liu]
TaiPing
Liu, Nonlinear resonance for quasilinear hyperbolic equation,
J. Math. Phys. 28 (1987), no. 11, 2593–2602. MR 913412
(88k:35122), http://dx.doi.org/10.1063/1.527751
 [Lu]
Y.G. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method, Vol. 128, Chapman and Hall, CRC Press, New York, 2002.
 [MMU]
Tetu
Makino, Kiyoshi
Mizohata, and Seiji
Ukai, The global weak solutions of compressible Euler equation with
spherical symmetry, Japan J. Indust. Appl. Math. 9
(1992), no. 3, 431–449. MR 1189949
(93k:35205), http://dx.doi.org/10.1007/BF03167276
 [Ni]
Takaaki
Nishida, Global solution for an initial boundary value problem of a
quasilinear hyperbolic system, Proc. Japan Acad. 44
(1968), 642–646. MR 0236526
(38 #4821)
 [Ta]
L.
Tartar, Compensated compactness and applications to partial
differential equations, Nonlinear analysis and mechanics: HeriotWatt
Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston,
Mass.London, 1979, pp. 136–212. MR 584398
(81m:35014)
 [Ts1]
Naoki
Tsuge, Global 𝐿^{∞} solutions of the compressible
Euler equations with spherical symmetry, J. Math. Kyoto Univ.
46 (2006), no. 3, 457–524. MR 2311356
(2009d:35267)
 [Ts2]
Naoki
Tsuge, The compressible Euler equations for an isothermal gas with
spherical symmetry, J. Math. Kyoto Univ. 43 (2004),
no. 4, 737–754. MR 2030796
(2004i:76158)
 [Di]
 R. J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys., 91 (1983), 130. MR 719807 (85i:35118)
 [DW]
 X.X. Ding and J.H. Wang, Global solutions for a semilinear parabolic system, Acta Math. Sci., 3 (1983), 397414. MR 812546 (86k:35058)
 [EGM]
 P. Embid, J. Goodman and A. Majda, Multiple steady states for 1d transsonic flow, SIAM J. Sci. and Stat. Comput., 5 (1984), 2141. MR 731879 (86a:76029)
 [Gl]
 J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1965), 95105. MR 0194770 (33:2976)
 [GMP]
 J. Glimm, G. Marshall and B. Plohr, A generalized Riemann problem for quasionedimensional gas flows, Adv. Appl. Math., 5 (1984), 130. MR 736548 (85e:76041)
 [HW]
 F.M Huang and Z. Wang, Convergence of viscosity solutions for isentropic gas dynamics, SIAM J. Math. Anal., 34 (2003), 595610. (1984), 130.
 [IT]
 E. Isaacson and B. Temple, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992), 12601278. MR 1182123 (93f:35140)
 [KL]
 C. Klingenberg and Y.G. Lu, Existence of solutions to hyperbolic conservation laws with a source, Commun. Math. Phys., 187 (1997), 327340. MR 1463831 (98d:35139)
 [Liu]
 T.P. Liu, Resonance for a quasilinear hyperbolic equation, J. Math. Phys., 28 (1987), 25932602. MR 913412 (88k:35122)
 [Lu]
 Y.G. Lu, Hyperbolic Conservation Laws and the Compensated Compactness Method, Vol. 128, Chapman and Hall, CRC Press, New York, 2002.
 [MMU]
 T. Makino, K. Mizohata and S. Ukai, The global weak solutions of the compressible Euler equation with spherical symmetry (I), (II), Japan J. Indust. Appl. Math., 9 (1992), 431449, 11 (1994), 417426. MR 1189949 (93k:35205); MR1299954 (95j:35172)
 [Ni]
 T. Nishida, Global solution for an initialboundaryvalue problem of a quasilinear hyperbolic system, Proc. Jap. Acad., 44 (1968), 642646. MR 0236526 (38:4821)
 [Ta]
 T. Tartar, Compensated compactness and applications to partial differential equations, In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics, HeriotWatt symposium, Vol. 4, ed. R. J. Knops, Pitman Press, London, 1979. MR 584398 (81m:35014)
 [Ts1]
 N. Tsuge, Global solutions of the compressible Euler equations with spherical symmetry, J. Math. Kyoto Univ., 46 (2006), 457524. MR 2311356 (2009d:35267)
 [Ts2]
 N. Tsuge, The compressible Euler equations for an isothermal gas with spherical symmetry, J. Math. Kyoto Univ., 43 (2004), 737754. MR 2030796 (2004i:76158)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
35L65,
76N10
Retrieve articles in all journals
with MSC (2010):
35L65,
76N10
Additional Information
Yunguang Lu
Affiliation:
Department of Mathematics, Hangzhou Normal University, Hangzhou, 310036, People’s Republic of China – and – Department of Mathematics, National University of Colombia, Bogota, Colombia
Email:
yglu_2000@yahoo.com
DOI:
http://dx.doi.org/10.1090/S000299392011107330
PII:
S 00029939(2011)107330
Keywords:
Resonance,
gas dynamics,
global weak solution,
$L^{\infty}$ estimate
Received by editor(s):
April 6, 2010
Received by editor(s) in revised form:
April 27, 2010, and July 26, 2010
Published electronically:
February 8, 2011
Additional Notes:
The author thanks the referee for many valuable suggestions.
Communicated by:
Matthew J. Gursky
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
