Resonance for the isothermal system of isentropic gas dynamics

Author:
Yun-guang Lu

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2821-2826

MSC (2010):
Primary 35L65, 76N10

DOI:
https://doi.org/10.1090/S0002-9939-2011-10733-0

Published electronically:
February 8, 2011

MathSciNet review:
2801623

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we remove the restriction or in the paper ``Existence of Solutions to Hyperbolic Conservation Laws with a Source'' (Commun. Math. Phys., 187 (1997), 327-340) and obtain the existence of solutions for the resonant, isothermal system of isentropic gas dynamics.

**[Di]**R. J. DiPerna,*Convergence of the viscosity method for isentropic gas dynamics*, Commun. Math. Phys.,**91**(1983), 1-30. MR**719807 (85i:35118)****[DW]**X.-X. Ding and J.-H. Wang,*Global solutions for a semilinear parabolic system*, Acta Math. Sci.,**3**(1983), 397-414. MR**812546 (86k:35058)****[EGM]**P. Embid, J. Goodman and A. Majda,*Multiple steady states for 1-d transsonic flow*, SIAM J. Sci. and Stat. Comput.,**5**(1984), 21-41. MR**731879 (86a:76029)****[Gl]**J. Glimm,*Solutions in the large for nonlinear hyperbolic systems of equations*, Comm. Pure Appl. Math.,**18**(1965), 95-105. MR**0194770 (33:2976)****[GMP]**J. Glimm, G. Marshall and B. Plohr,*A generalized Riemann problem for quasi-one-dimensional gas flows*, Adv. Appl. Math.,**5**(1984), 1-30. MR**736548 (85e:76041)****[HW]**F.-M Huang and Z. Wang,*Convergence of viscosity solutions for isentropic gas dynamics*, SIAM J. Math. Anal.,**34**(2003), 595-610. (1984), 1-30.**[IT]**E. Isaacson and B. Temple,*Nonlinear resonance in systems of conservation laws*, SIAM J. Appl. Math.,**52**(1992), 1260-1278. MR**1182123 (93f:35140)****[KL]**C. Klingenberg and Y.-G. Lu,*Existence of solutions to hyperbolic conservation laws with a source*, Commun. Math. Phys.,**187**(1997), 327-340. MR**1463831 (98d:35139)****[Liu]**T.P. Liu,*Resonance for a quasilinear hyperbolic equation*, J. Math. Phys.,**28**(1987), 2593-2602. MR**913412 (88k:35122)****[Lu]**Y.-G. Lu,*Hyperbolic Conservation Laws and the Compensated Compactness Method*, Vol. 128, Chapman and Hall, CRC Press, New York, 2002.**[MMU]**T. Makino, K. Mizohata and S. Ukai,*The global weak solutions of the compressible Euler equation with spherical symmetry (I), (II)*, Japan J. Indust. Appl. Math.,**9**(1992), 431-449,**11**(1994), 417-426. MR**1189949 (93k:35205); MR1299954 (95j:35172)****[Ni]**T. Nishida,*Global solution for an initial-boundary-value problem of a quasilinear hyperbolic system*, Proc. Jap. Acad.,**44**(1968), 642-646. MR**0236526 (38:4821)****[Ta]**T. Tartar,*Compensated compactness and applications to partial differential equations*, In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt symposium, Vol. 4, ed. R. J. Knops, Pitman Press, London, 1979. MR**584398 (81m:35014)****[Ts1]**N. Tsuge,*Global solutions of the compressible Euler equations with spherical symmetry*, J. Math. Kyoto Univ.,**46**(2006), 457-524. MR**2311356 (2009d:35267)****[Ts2]**N. Tsuge,*The compressible Euler equations for an isothermal gas with spherical symmetry*, J. Math. Kyoto Univ.,**43**(2004), 737-754. MR**2030796 (2004i:76158)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35L65,
76N10

Retrieve articles in all journals with MSC (2010): 35L65, 76N10

Additional Information

**Yun-guang Lu**

Affiliation:
Department of Mathematics, Hangzhou Normal University, Hangzhou, 310036, People’s Republic of China – and – Department of Mathematics, National University of Colombia, Bogota, Colombia

Email:
yglu_2000@yahoo.com

DOI:
https://doi.org/10.1090/S0002-9939-2011-10733-0

Keywords:
Resonance,
gas dynamics,
global weak solution,
$L^{\infty}$ estimate

Received by editor(s):
April 6, 2010

Received by editor(s) in revised form:
April 27, 2010, and July 26, 2010

Published electronically:
February 8, 2011

Additional Notes:
The author thanks the referee for many valuable suggestions.

Communicated by:
Matthew J. Gursky

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.