Existence of solutions with asymptotic behavior of exterior problems of Hessian equations

Author:
Limei Dai

Journal:
Proc. Amer. Math. Soc. **139** (2011), 2853-2861

MSC (2010):
Primary 35J96, 35J60

Published electronically:
January 28, 2011

MathSciNet review:
2801627

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we use the Perron method to prove the existence of viscosity solutions with asymptotic behavior at infinity to Hessian equations.

**[1]**L. Caffarelli and Yanyan Li,*An extension to a theorem of Jörgens, Calabi, and Pogorelov*, Comm. Pure Appl. Math.**56**(2003), no. 5, 549–583. MR**1953651**, 10.1002/cpa.10067**[2]**L. Caffarelli and YanYan Li,*Some multi-valued solutions to Monge-Ampère equations*, Comm. Anal. Geom.**14**(2006), no. 3, 411–441. MR**2260718****[3]**L. Caffarelli, L. Nirenberg, and J. Spruck,*The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian*, Acta Math.**155**(1985), no. 3-4, 261–301. MR**806416**, 10.1007/BF02392544**[4]**Andrea Colesanti and Paolo Salani,*Hessian equations in non-smooth domains*, Nonlinear Anal.**38**(1999), no. 6, Ser. A: Theory Methods, 803–812. MR**1710156**, 10.1016/S0362-546X(98)00121-7**[5]**Kai-Seng Chou and Xu-Jia Wang,*A variational theory of the Hessian equation*, Comm. Pure Appl. Math.**54**(2001), no. 9, 1029–1064. MR**1835381**, 10.1002/cpa.1016**[6]**Bo Guan,*The Dirichlet problem for a class of fully nonlinear elliptic equations*, Comm. Partial Differential Equations**19**(1994), no. 3-4, 399–416. MR**1265805**, 10.1080/03605309408821022**[7]**H. Ishii and P.-L. Lions,*Viscosity solutions of fully nonlinear second-order elliptic partial differential equations*, J. Differential Equations**83**(1990), no. 1, 26–78. MR**1031377**, 10.1016/0022-0396(90)90068-Z**[8]**Neil S. Trudinger,*On the Dirichlet problem for Hessian equations*, Acta Math.**175**(1995), no. 2, 151–164. MR**1368245**, 10.1007/BF02393303**[9]**Neil S. Trudinger,*Weak solutions of Hessian equations*, Comm. Partial Differential Equations**22**(1997), no. 7-8, 1251–1261. MR**1466315**, 10.1080/03605309708821299**[10]**Neil S. Trudinger and Xu-Jia Wang,*Hessian measures. II*, Ann. of Math. (2)**150**(1999), no. 2, 579–604. MR**1726702**, 10.2307/121089**[11]**John I. E. Urbas,*On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations*, Indiana Univ. Math. J.**39**(1990), no. 2, 355–382. MR**1089043**, 10.1512/iumj.1990.39.39020

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
35J96,
35J60

Retrieve articles in all journals with MSC (2010): 35J96, 35J60

Additional Information

**Limei Dai**

Affiliation:
School of Mathematics and Information Science, Weifang University, Shandong 261061, People’s Republic of China

Email:
limeidai@yahoo.com.cn

DOI:
http://dx.doi.org/10.1090/S0002-9939-2011-10833-5

Keywords:
Hessian equations,
viscosity solutions,
asymptotic behavior.

Received by editor(s):
May 5, 2010

Received by editor(s) in revised form:
July 28, 2010

Published electronically:
January 28, 2011

Communicated by:
Matthew J. Gursky

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.