Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Martin's maximum and weak square


Authors: James Cummings and Menachem Magidor
Journal: Proc. Amer. Math. Soc. 139 (2011), 3339-3348
MSC (2010): Primary 03E55, 03E57
DOI: https://doi.org/10.1090/S0002-9939-2011-10730-5
Published electronically: January 19, 2011
MathSciNet review: 2811288
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We analyse the influence of the forcing axiom Martin's Maximum on the existence of square sequences, with a focus on the weak square principle $ \square_{\lambda, \mu}$.


References [Enhancements On Off] (What's this?)

  • 1. J. Cummings, M. Dzamonja, and S. Shelah, A consistency result on weak reflection, Fundamenta Mathematicae 148 (1995), no. 1, 91-100. MR 1354940 (96k:03118)
  • 2. J. Cummings, M. Foreman, and M. Magidor, Squares, scales and stationary reflection, Journal of Mathematical Logic 1 (2001), no. 1, 35-98. MR 1838355 (2003a:03068)
  • 3. -, The non-compactness of square, The Journal of Symbolic Logic 68 (2003), no. 2, 637-643. MR 1976595 (2004h:03096)
  • 4. J. Cummings and E. Schimmerling, Indexed squares, Israel Journal of Mathematics 131 (2002), 61-99. MR 1942302 (2004k:03085)
  • 5. M. Džamonja and S. Shelah, Saturated filters at successors of singular, weak reflection and yet another weak club principle, Annals of Pure and Applied Logic 79 (1996), no. 3, 289-316. MR 1395679 (97d:03062)
  • 6. M. Foreman and M. Magidor, A very weak square principle, Journal of Symbolic Logic 62 (1997), no. 1, 175-196. MR 1450520 (98i:03062)
  • 7. M. Foreman, M. Magidor, and S. Shelah, Martin's maximum, saturated ideals, and nonregular ultrafilters. I, Annals of Mathematics 127 (1988), no. 1, 1-47. MR 924672 (89f:03043)
  • 8. R. B. Jensen, Some remarks on $ \square$ below zero-pistol, circulated notes.
  • 9. M. Magidor, Square principles and versions of the Proper Forcing Axiom, to appear.
  • 10. E. Schimmerling, Combinatorial principles in the core model for one Woodin cardinal, Annals of Pure and Applied Logic 74 (1995), no. 2, 153-201. MR 1342358 (96f:03041)
  • 11. S. Shelah, On successors of singular cardinals, Logic Colloquium '78 (Mons, 1978), North-Holland, Amsterdam, 1979, pp. 357-380. MR 567680 (82d:03079)
  • 12. -, Cardinal arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press, New York, 1994. MR 1318912 (96e:03001)
  • 13. R. M. Solovay, Strongly compact cardinals and the GCH, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), American Mathematical Society, Providence, RI, 1974, pp. 365-372. MR 0379200 (52:106)
  • 14. R. M. Solovay, W. N. Reinhardt, and A. Kanamori, Strong axioms of infinity and elementary embeddings, Annals of Mathematical Logic 13 (1978), no. 1, 73-116. MR 482431 (80h:03072)
  • 15. S. Todorčević, A note on the proper forcing axiom, Axiomatic Set Theory (Boulder, Colo., 1983) (James E. Baumgartner, Donald A. Martin, and Saharon Shelah, eds.), Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, RI, 1984, pp. 209-218. MR 763902 (86f:03089)
  • 16. M. Viale, The proper forcing axiom and the singular cardinal hypothesis, The Journal of Symbolic Logic 71 (2006), no. 2, 473-479. MR 2225888 (2006m:03075)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 03E55, 03E57

Retrieve articles in all journals with MSC (2010): 03E55, 03E57


Additional Information

James Cummings
Affiliation: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: jcumming@andrew.cmu.edu

Menachem Magidor
Affiliation: Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
Email: menachem@math.huji.ac.il

DOI: https://doi.org/10.1090/S0002-9939-2011-10730-5
Received by editor(s): April 21, 2010
Received by editor(s) in revised form: August 6, 2010
Published electronically: January 19, 2011
Additional Notes: The first author was partially supported by NSF grant DMS-0654046
This work was done during a visit to the Institut Mittag-Leffler (Djursholm, Sweden).
Communicated by: Julia Knight
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society