LARGE CHARACTER DEGREES OF SOLVABLE 3'-GROUPS

YONG YANG

(Communicated by Jonathan I. Hall)

Abstract. We prove that if G is a finite solvable group and 3 \n \n \n \n |G:F(G)|, then the index of the Fitting subgroup of G is at most the square of the largest irreducible character degree of G.

1. Introduction

Let G be a finite group and denote by \(b(G) = \max\{\psi(1) \mid \psi \in \text{Irr}(G)\} \) the largest degree of an irreducible character of G. In [5] Gluck proves that in all finite groups the index of the Fitting subgroup \(F(G) \) in G is bounded by a polynomial function of \(b(G) \). For a solvable group, Gluck further shows that \(|G:F(G)| \leq b(G)^{13/2} \) and conjectures that \(|G:F(G)| \leq b(G)^2 \). This has been verified by Espuelas [1] for G of odd order. Espuelas’ result has been extended in [4] to G a solvable group with abelian Sylow 2-subgroups by Dolfi and Jabara. The best general bound \(|G:F(G)| \leq b(G)^3 \) is given by Moretó and Wolf in [6]. In this note we prove Gluck’s conjecture for all solvable groups with order not divisible by 3.

2. Gluck’s conjecture for solvable 3'-groups

Theorem 2.1. Suppose that a finite solvable group G acts faithfully, irreducibly and quasi-primitively on a finite vector space V. By [9, Theorem 2.2], G will have a uniquely determined normal subgroup E which is a direct product of extraspecial \(p \)-groups for various \(p \) and \(e = \sqrt{|E/Z(E)|} \). Assume \(e = 5, 7 \) or \(e \geq 10 \) and \(e \neq 16 \); then G will have at least 5 regular orbits on V.

Proof. This follows from [9, Theorem 3.1] and [10, Theorem 3.1].

Theorem 2.2. Suppose that G is a finite solvable group and V is a faithful, irreducible and quasi-primitive \(\mathbb{F}G \)-module and char(\(\mathbb{F} \)) = r. Assume 3 \n \n \n \n |G|; then G has at least 3 regular orbits on \(V \oplus V \).

Proof. By [9, Theorem 2.2], G will have a uniquely determined normal subgroup E which is a direct product of extraspecial \(p \)-groups for various \(p \) and \(e = \sqrt{|E/Z(E)|} \).

Since 3 \n \n \n \n |G|, 3 \n \n \n \n |e and G will have at least 5 regular orbits on V unless \(e = 1, 2, 4, 8, 16 \) by Theorem 2.1. Since 3 \n \n \n \n |G|, G will have at least \(r \) regular orbits on \(V \oplus V \) by [3, Theorem 3.4]. Assume \(e = 2, 4, 8, 16 \); then \(r \geq 3 \) and G will have at least 3 regular orbits on \(V \oplus V \).

Received by the editors March 17, 2010 and, in revised form, July 22, 2010 and August 18, 2010.

2010 Mathematics Subject Classification. Primary 20C15.

©2011 American Mathematical Society
Thus we may assume $e = 1$ and $r = 2$. As in [7], if V is a finite vector space of dimension n over $\text{GF}(q)$, where q is a prime power, we denote by $\Gamma(q^n) = \Gamma(V)$ the semilinear group of V, i.e.,

$$\Gamma(V) = \{ x \mapsto ax^\sigma \mid x \in \text{GF}(q^n), a \in \text{GF}(q^n)^\times, \sigma \in \text{Gal}(\text{GF}(q^n)/\text{GF}(q))\}.$$

Since $e = 1$ we have $G \leq \Gamma(V) \leq \Gamma(2^d) \cong G_1$ by [7, Corollary 2.3(b)]. For any $0 \neq v \in V$, $|\mathbf{C}_G(v)| = d$. We can hence assume that $\mathbf{C}_G(v)$ is the Galois group of $V = \text{GF}(2^d)$. So the elements of V that do not belong to a regular orbit of $\mathbf{C}_G(v)$ are in the union of the subfields $\text{GF}(2^{d/m})$, m varying among the prime divisors of d. Since the number of distinct prime divisors of d is at most $\log_2(d)$, it is enough to prove that $f(d) = (2^d - 1) - \log_2(d) \cdot (2^{d/2} - 1) - 2d$ is positive. It is not hard to check that $f(d) > 0$ for all $d \geq 4$. Thus we are left with the cases when $d = 1, 2, 3$:

1. Let $d = 1$; then $G \leq \Gamma(2^1)$ and G is trivial. The result is clear.
2. Let $d = 2$; then $G \leq \Gamma(2^2) \cong S_3$. Since $3 \nmid |G|$, $G \not\cong Z_2$ and the result is clear.
3. Let $d = 3$; then $G \leq \Gamma(2^3)$. Since $3 \nmid |G|$, $G \cong Z_7$ and the result is clear.

\square

Theorem 2.3. Suppose that G is a finite solvable group and V is a faithful and completely reducible G-module (possibly of mixed characteristic). Assume $3 \nmid |G|$; then G has at least 3 regular orbits on $V \oplus V$.

Proof. We work by induction on $|GV|$.

Assume first that $V = U \oplus W$ with U and W proper G-submodules. Then by inductive hypothesis $G/\mathbf{C}_G(U)$ has 3 regular orbits on $U \oplus U$ and $G/\mathbf{C}_G(W)$ has 3 regular orbits on $W \oplus W$. Since $\mathbf{C}_G(U) \cap \mathbf{C}_G(W) = 1$, it follows that G has 3 regular orbits on $U \oplus U \oplus W \oplus W \cong V \oplus V$.

Therefore, we can assume that V is irreducible.

Assume V is quasi-primitive; then the result follows from Theorem 2.2.

Now we assume that V is not quasi-primitive, then there exists N normal in G such that $V_N = V_1 \oplus \cdots \oplus V_m$ for $m > 1$ homogeneous components V_i of V_N. If N is maximal with this property, then $S = G/N$ primitivey permutes the V_i. Also $V = V_1^G$, induced from $\mathbf{N}_G(V_1)$. If $H = \mathbf{N}_G(V_1)/\mathbf{C}_G(V_1)$, then H acts faithfully and irreducibly on V_1 and G is isomorphic to a subgroup of $H \cdot S$.

By induction H will have at least 3 regular orbits on $V_1 \oplus V_1$. S is a solvable primitive permutation group on $\Omega = \{ V_1, \ldots, V_m \}$. By [8, Proposition 3.2(2)], G will have at least 5 regular orbits on $V \oplus V$ unless $m \leq 4$. Since $3 \nmid |S|$, the only case left is when $|\Omega| = 2$ and $S \cong S_2$. In this case G will have at least 3 regular orbits on $V \oplus V$. \square

Corollary 2.4. Suppose that G is a finite solvable group and V is a faithful and completely reducible G-module (possibly of mixed characteristic). Assume $3 \nmid |G|$; then there exists $v \in V$ such that $|\mathbf{C}_G(v)| \leq \sqrt{|G|}$.

Proof. By Theorem 2.3, there is an element $(v, u) \in V \oplus V$ such that $\mathbf{C}_G((v, u)) = \mathbf{C}_G(v) \cap \mathbf{C}_G(u) = 1$. Thus, we have

$$|\mathbf{C}_G(v)| \cdot |\mathbf{C}_G(u)| = \frac{|\mathbf{C}_G(v)|}{|\mathbf{C}_G(v) \cap \mathbf{C}_G(u)|} = |\mathbf{C}_G(v)| |\mathbf{C}_G(u)| \leq |G|.$$

It follows that either $|\mathbf{C}_G(v)| \leq \sqrt{|G|}$ or $|\mathbf{C}_G(u)| \leq \sqrt{|G|}$. \square
Theorem 2.5. Let G be a finite solvable group and $3
mid |G : F(G)|$. Then $|G : F(G)| \leq b(G)^2$.

Proof. Let $U = F(G)/\Phi(G)$ and $\overline{G} = G/F(G)$. U is a faithful and completely reducible \overline{G}-module by Gaschütz's theorem [7, Theorem 1.12]. Let $V = \text{Irr}(F(G)/\Phi(G))$. V is a faithful and completely reducible \overline{G}-module by [7, Proposition 12.1]. By Corollary 2.4, there exists $\lambda \in V$ such that $\overline{I} = I_{\overline{G}}(\lambda) = \{g \in \overline{G} | \lambda g = \lambda\}$ satisfies $|\overline{I}| \leq |\overline{G}|^{1/2}$. Consider λ as a character of $F(G)$ with a kernel containing $\Phi(G)$. Let I be the preimage of \overline{I} in G. Now $I = I_G(\lambda) = \{g \in G | \lambda g = \lambda\}$. Take $\mu \in \text{Irr}(I|\lambda)$. Now $ψ = I^G \in \text{Irr}(G)$. Thus we have $|G : F(G)| = |G : I||I : F(G)| \leq |G : I|^2 \leq ψ(1)^2 \leq b(G)^2$. □

Acknowledgements

The author wishes to thank his advisor, Professor Alexandre Turull, for his many helpful suggestions and his constant encouragement. The author is also greatly in debt to the referee for valuable suggestions.

References

Department of Mathematics, Texas State University at San Marcos, San Marcos, Texas 78666
E-mail address: yang@txstate.edu