Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Brownian motion with variable drift can be space filling


Authors: Tonći Antunović, Yuval Peres and Brigitta Vermesi
Journal: Proc. Amer. Math. Soc. 139 (2011), 3359-3373
MSC (2010): Primary 60J65, 26A16, 26A30, 28A80
DOI: https://doi.org/10.1090/S0002-9939-2011-10737-8
Published electronically: February 10, 2011
MathSciNet review: 2811290
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ d \geq 2$ let $ B$ be standard $ d$-dimensional Brownian motion. For any $ \alpha < 1/d$ we construct an $ \alpha$-Hölder continuous function $ f \colon [0,1] \to \mathbb{R}^d$ so that the range of $ B-f$ covers an open set. This strengthens a result of Graversen (1982) and answers a question of Le Gall (1988).


References [Enhancements On Off] (What's this?)

  • 1. Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang, Stochastic calculus for fractional Brownian motion and applications, Probability and its Applications (New York), Springer-Verlag London Ltd., London, 2008. MR 2387368 (2010a:60145)
  • 2. Brahim Boufoussi, Marco Dozzi, and Raby Guerbaz, Path properties of a class of locally asymptotically self similar processes, Electron. J. Probab. 13 (2008), no. 29, 898-921. MR 2413288 (2009e:60088)
  • 3. A. R. Butz, Alternative algorithm for Hilbert's space-filling curve, IEEE Trans. Comput. 20 (1971), no. 4, 424-426.
  • 4. Arthur R. Butz, Convergence with Hilbert's space filling curve, J. Comput. System Sci. 3 (1969), 128-146. MR 0246631 (39:7935)
  • 5. Kenneth Falconer, Fractal geometry, second ed., John Wiley & Sons Inc., Hoboken, NJ, 2003, Mathematical foundations and applications. MR 2118797 (2006b:28001)
  • 6. S. E. Graversen, ``Polar''-functions for Brownian motion, Z. Wahrsch. Verw. Gebiete 61 (1982), no. 2, 261-270. MR 675615 (84j:60090)
  • 7. John Hawkes, On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 90-102. MR 0292165 (45:1252)
  • 8. Jean-Pierre Kahane, Some random series of functions, second ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985. MR 833073 (87m:60119)
  • 9. Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, second ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940 (92h:60127)
  • 10. Jean-François Le Gall, Sur les fonctions polaires pour le mouvement brownien, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 186-189. MR 960526 (90a:60146)
  • 11. Paul Lévy, Sur certains processus stochastiques homogènes, Compositio Math. 7 (1939), 283-339. MR 0000919 (1:150a)
  • 12. Y. Peres and P. Mörters, Brownian motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010. MR 2604525
  • 13. F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), no. 2, 155-186. MR 1002918 (90f:28006)
  • 14. Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, third ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)
  • 15. Hans Sagan, Space-filling curves, Universitext, Springer-Verlag, New York, 1994. MR 1299533 (95h:00001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60J65, 26A16, 26A30, 28A80

Retrieve articles in all journals with MSC (2010): 60J65, 26A16, 26A30, 28A80


Additional Information

Tonći Antunović
Affiliation: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
Email: tantun@math.berkeley.edu

Yuval Peres
Affiliation: Theory Group, Microsoft Research, Redmond, Washington 98052
Email: peres@microsoft.com

Brigitta Vermesi
Affiliation: Department of Mathematics, University of Washington, Box 354322, Seattle, Washington 98195 – and – Institute for Pure and Applied Mathematics, 460 Portola Plaza, Los Angeles, California 90095
Email: bvermesi@math.washington.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-10737-8
Keywords: Brownian motion, space-filling curves, Hölder continuity
Received by editor(s): May 21, 2010
Received by editor(s) in revised form: August 11, 2010
Published electronically: February 10, 2011
Additional Notes: The third author was supported by NSF Supplemental Funding DMS-0439872 to UCLA-IPAM, P.I. R. Caflisch
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society