Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stability of syzygy bundles


Authors: Pedro Macias Marques and Rosa María Miró-Roig
Journal: Proc. Amer. Math. Soc. 139 (2011), 3155-3170
MSC (2010): Primary 14J60, 14F05
DOI: https://doi.org/10.1090/S0002-9939-2011-10745-7
Published electronically: January 28, 2011
MathSciNet review: 2811270
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that given integers $ N$, $ d$ and $ n$ such that $ {N\ge2}, (N,d,n)$ $ \ne(2,2,5)$, and $ {N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $ n$ monomials in $ K\left[X_0,\ldots,X_N\right]$ of degree $ d$ such that their syzygy bundle is stable. Case $ {N\ge3}$ was obtained independently by Coanda with a different choice of families of monomials.

For $ {(N,d,n)=(2,2,5)}$, there are $ 5$ monomials of degree $ 2$ in $ K\left[X_0,X_1,X_2\right]$ such that their syzygy bundle is semistable.


References [Enhancements On Off] (What's this?)

  • [Bal92] Edoardo Ballico, On the stability of certain higher rank bundles on $ \mathbb{P}^n$, Rendiconti del Circolo Matematico di Palermo 41 (1992), no. 2, 309-314. MR 1196622 (93k:14052)
  • [Bre] Holger Brenner, Semistable monomial syzygy bundles, personal notes.
  • [Bre08a] -, Looking out for stable syzygy bundles, Advances in Mathematics 219 (2008), no. 2, 401-427, with an appendix by Georg Hein. MR 2435644 (2009g:14049)
  • [Bre08b] -, Tight closure and vector bundles, Three lectures on commutative algebra (Gemma Colomé-Nin, Teresa Cortadellas Benítez, Juan Elias, and Santiago Zarzuela, eds.), University Lecture Series, vol. 42, American Mathematical Society, Providence, RI, 2008, pp. 1-71. MR 2410690 (2010h:13005)
  • [CMMR10] Laura Costa, Pedro Macias Marques, and Rosa María Miró-Roig, Stability and unobstructedness of syzygy bundles, Journal of Pure and Applied Algebra 214 (2010), no. 7, 1241-1262. MR 2587000
  • [Coa09] Iustin Coanda, On the stability of syzygy bundles, arXiv:0909.4455, 2009.
  • [Fle84] Hubert Flenner, Restrictions of semistable bundles on projective varieties, Commentarii Mathematici Helvetici 59 (1984), 635-650. MR 780080 (86m:14014)
  • [Mar09] Pedro Macias Marques, Stability and moduli spaces of syzygy bundles, Ph.D. thesis, Universitat de Barcelona, 2009.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14J60, 14F05

Retrieve articles in all journals with MSC (2010): 14J60, 14F05


Additional Information

Pedro Macias Marques
Affiliation: Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59, 7000–671 Évora, Portugal
Address at time of publication: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
Email: pmm@uevora.pt

Rosa María Miró-Roig
Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
Email: miro@ub.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-10745-7
Keywords: Stability, vector bundles
Received by editor(s): November 25, 2009
Received by editor(s) in revised form: August 17, 2010
Published electronically: January 28, 2011
Additional Notes: The first author was partially supported by Fundação para a Ciência e a Tecnologia, under grant SFRH/BD/27929/2006, and by CIMA – Centro de Investigação em Matemática e Aplicações, Universidade de Évora.
The second author was partially supported by MTM2007-61104.
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society