Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Geometry of the Siegel modular threefold with paramodular level structure


Author: Chia-Fu Yu
Journal: Proc. Amer. Math. Soc. 139 (2011), 3181-3190
MSC (2010): Primary 14G35, 14K10, 11G18, 32S25
DOI: https://doi.org/10.1090/S0002-9939-2011-10749-4
Published electronically: February 3, 2011
MathSciNet review: 2811273
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we extend some results of Norman and Oort and of de Jong, and give an explicit description of the geometry of the Siegel modular threefold with paramodular level structure. We also discuss advantages and restrictions of three standard methods for studying moduli spaces of abelian varieties.


References [Enhancements On Off] (What's this?)

  • 1. J. D. Achter, Hilbert-Siegel moduli spaces in positive characteristic. Rocky Mountain J. Math.  33 (2003), 1-25. MR 1994479 (2004e:14071)
  • 2. A. J. de Jong, The moduli spaces of polarized abelian varieties. Math. Ann.  295 (1993), 485-503. MR 1204833 (94g:14024)
  • 3. A. J. de Jong, The moduli spaces of principally polarized abelian varieties with $ \Gamma_0 (p)$-level structure. J. Algebraic Geom.  2 (1993), 667-688. MR 1227472 (94d:14042)
  • 4. Groupes de monodromie en géométrie algébrique. II. Séminaire de Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II). Dirigé par P. Deligne et N. Katz. Lecture Notes in Math., vol. 340, Springer-Verlag, 1973. MR 0354657 (50:7135)
  • 5. E. Freitag and R. Kiehl, Etale cohomology and the Weil conjecture. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 13, Springer-Verlag, Berlin, 1988. MR 926276 (89f:14017)
  • 6. A. Grothendieck, Groupes de Barsotti-Tate et Cristaux de Dieudonné. Les Presses de l'Université de Montréal, 1974. MR 0417192 (54:5250)
  • 7. N. Koblitz, $ p$-adic variant of the zeta-function of families of varieties defined over finite fields. Compositio Math. 31 (1975), 119-218. MR 0414557 (54:2658)
  • 8. W. Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes. Lecture Notes in Math., 264, Springer-Verlag, 1972. MR 0347836 (50:337)
  • 9. P. Norman, An algorithm for computing moduli of abelian varieties. Ann. of Math. (2) 101 (1975), 499-509. MR 0389928 (52:10757)
  • 10. P. Norman and F. Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), 413-439. MR 595202 (82h:14026)
  • 11. F. Oort, Finite group schemes, local moduli for abelian varieties, and lifting problems. Algebraic Geometry (Oslo) 223-254 (1972). MR 0301026 (46:186)
  • 12. M. Rapoport and Th. Zink, Period spaces for $ p$-divisible groups. Ann. Math. Studies 141, Princeton Univ. Press, 1996. MR 1393439 (97f:14023)
  • 13. J. Tilouine, Siegel Varieties and $ p$-Adic Siegel Modular Forms. Doc. Math. Extra Volume: John H. Coates' Sixtieth Birthday (2006), 781-817. MR 2290605 (2007k:11067)
  • 14. C.-F. Yu, Lifting abelian varieties with additional structures. Math. Z. 242 (2002), 427-441. MR 1985459 (2004m:14095)
  • 15. C.-F. Yu, The supersingular loci and mass formulas on Siegel modular varieties. Doc. Math. 11 (2006), 449-468. MR 2288077 (2007m:11081)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14G35, 14K10, 11G18, 32S25

Retrieve articles in all journals with MSC (2010): 14G35, 14K10, 11G18, 32S25


Additional Information

Chia-Fu Yu
Affiliation: Institute of Mathematics, Academia Sinica, Astronomy-Mathematics Building, 6th Floor, No. 1, Roosevelt Road, Sec. 4, Taipei, Taiwan – and – NCTS (Taipei Office)
Email: chiafu@math.sinica.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-2011-10749-4
Keywords: Siegel modular varieties, local models, paramodular level structure
Received by editor(s): January 23, 2010
Received by editor(s) in revised form: August 11, 2010, and August 19, 2010
Published electronically: February 3, 2011
Communicated by: Lev Borisov
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society