Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mixing categories


Authors: John Oprea and Jeff Strom
Journal: Proc. Amer. Math. Soc. 139 (2011), 3383-3392
MSC (2010): Primary 55M30; Secondary 55P99
DOI: https://doi.org/10.1090/S0002-9939-2011-10958-4
Published electronically: March 2, 2011
MathSciNet review: 2811292
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that $ \mathrm{cat}(X) \leq \mathrm{cat}_1(X) + \mathrm{cat}^1(X)$, where $ \mathrm{cat}_1(X)$ is Fox's $ 1$-dimensional category and $ \mathrm{cat}^1(X)$ is the $ \mathcal{A}$-category of Clapp and Puppe with $ \mathcal{A}=\{$$ \mbox{$1$-dimensional spaces}$$ \}$.


References [Enhancements On Off] (What's this?)

  • [CP] M. Clapp and D. Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets, Trans. Amer. Math. Soc. 298 (1986), no. 2, 603-620. MR 860382 (88d:55004)
  • [CP2] M. Clapp and D. Puppe, The generalized Lusternik-Schnirelmann category of a product space, Trans. Amer. Math. Soc. 321 (1990), no. 2, 525-532. MR 1038015 (91a:55012)
  • [CLOT] O. Cornea, G. Lupton, J. Oprea and D. Tanré, Lusternik-Schnirelmann Category, Amer. Math. Soc. Surveys and Mono. 103 (2003). MR 1990857 (2004e:55001)
  • [Cu] M. Cuvilliez, LS-catégorie et $ k$-monomorphisme, Thèse, Université Catholique de Louvain (1998).
  • [Dr1] A. Dranishnikov, On the Lusternik-Schnirelmann category of spaces with $ 2$-dimensional fundamental group, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1489-1497. MR 2465675 (2009i:55006)
  • [Dr2] A. Dranishnikov, The Lusternik-Schnirelmann category and the fundamental group, Algebraic & Geometric Topology 10 (2010), 917-924. MR 2629770
  • [EG] S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65, no. 3 (1957), 517-518. MR 0085510 (19:52d)
  • [Fo] R. Fox, On the Lusternik-Schnirelmann category, Ann. of Math. (2) 42 (1941), 333-370. MR 0004108 (2:320f)
  • [Ha] K. A. Hardie, On $ cat^i {X}$, J. Lond. Math. Soc. 3 (1971), 91-92. MR 0293626 (45:2703)
  • [LM] E. Laitinen and T. Matumoto, A gap theorem for Lusternik-Schnirelmann $ \pi_1$-category, Top. and its Apps. 93 (1999), 35-40. MR 1684210 (2000c:55006)
  • [NSS] R. Nendorf, N. Scoville and J. Strom, Categorical sequences, Algebr. Geom. Topol. 6 (2006), 809-838. MR 2240916 (2007e:55002)
  • [O] P. Ostrand, Dimension of metric spaces and Hilbert's problem 13, Bull. Amer. Math. Soc. 71 (1965), 619-622. MR 0177391 (31:1654)
  • [OS] J. Oprea and J. Strom, Lusternik-Schnirelmann category, complements of skeleta and a theorem of Dranishnikov, Algebraic & Geometric Topology 10 (2010), 1165-1186. MR 2653059
  • [RO] Y. Rudyak and J. Oprea, On the Lusternik-Schnirelmann category of symplectic manifolds and the Arnold conjecture, Math. Z. 230 (1999), no. 4, 673-678. MR 1686579 (2000b:53115)
  • [Str] J. Strom, Lusternik-Schnirelmann category of spaces with free fundamental group, Algebr. Geom. Topol. 7 (2007), 1805-1808. MR 2366179 (2008k:55007)
  • [Sv] A. Svarc, The genus of a fiber space, Amer. Math. Soc. Transl. Series 2, vol. 55 (1966), 49-140.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55M30, 55P99

Retrieve articles in all journals with MSC (2010): 55M30, 55P99


Additional Information

John Oprea
Affiliation: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115
Email: j.oprea@csuohio.edu

Jeff Strom
Affiliation: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5200
Email: Jeff.Strom@wmich.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-10958-4
Keywords: Lusternik-Schnirelmann category
Received by editor(s): August 22, 2010
Published electronically: March 2, 2011
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society