Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Nonunique factorization and principalization in number fields


Author: Kimball Martin
Journal: Proc. Amer. Math. Soc. 139 (2011), 3025-3038
MSC (2010): Primary 11R27, 11R29
DOI: https://doi.org/10.1090/S0002-9939-2011-11053-0
Published electronically: May 4, 2011
MathSciNet review: 2811259
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Following what is basically Kummer's relatively neglected approach to nonunique factorization, we determine the structure of the irreducible factorizations of an element $ n$ in the ring of integers of a number field $ K$. Consequently, we give a combinatorial expression for the number of irreducible factorizations of $ n$ in the ring. When $ K$ is quadratic, we show in certain cases how quadratic forms can be used to explicitly produce all irreducible factorizations of $ n$.


References [Enhancements On Off] (What's this?)

  • 1. Borevich, A. I.; Shafarevich, I. R. Number theory. Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803 (33:4001)
  • 2. Bosca, Sébastien. Principalization of ideals in abelian extensions of number fields. (English summary), Int. J. Number Theory 5 (2009), no. 3, 527-539. MR 2529089 (2010d:11127)
  • 3. Carlitz, L. A characterization of algebraic number fields with class number two. Proc. Amer. Math. Soc. 11 (1960), 391-392. MR 0111741 (22:2603)
  • 4. Chapman, Scott T.; Herr, Jeremy; Rooney, Natalie. A factorization formula for class number two. J. Number Theory 79 (1999), no. 1, 58-66. MR 1724253 (2001d:11105)
  • 5. Fogels, E. Zur arithmetik quadratischer Zahlenkörper. (German. Latvian summary), Univ. Riga. Wiss. Abh. Kl. Math. Abt. 1 (1943), 23-47. MR 0022231 (9:175g)
  • 6. Geroldinger, Alfred; Halter-Koch, Franz. Non-unique factorizations. Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton), 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2194494 (2006k:20001)
  • 7. Geroldinger, Alfred; Halter-Koch, Franz. Non-unique factorizations: a survey. Multiplicative ideal theory in commutative algebra, 207-226, Springer, New York, 2006. MR 2265810 (2007h:20065)
  • 8. Gras, Georges. Principalisation d'idéaux par extensions absolument abéliennes. (French. English summary) [Principalization of ideals by absolutely abelian extensions], J. Number Theory 62 (1997), no. 2, 403-421. MR 1432784 (98j:11087)
  • 9. Halter-Koch, Franz. Chebotarev formations and quantitative aspects of nonunique factorizations. Acta Arith. 62 (1992), no. 2, 173-206. MR 1183988 (93m:11119)
  • 10. Halter-Koch, Franz. On the asymptotic behaviour of the number of distinct factorizations into irreducibles. Ark. Mat. 31 (1993), no. 2, 297-305. MR 1263556 (94m:11128)
  • 11. Halter-Koch, Franz. Non-unique factorizations of algebraic integers. Funct. Approx. Comment. Math. 39 (2008), part 1, 49-60. MR 2490087 (2009m:11185)
  • 12. Heider, Franz-Peter; Schmithals, Bodo. Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. (German) [The capitulation of ideal classes in unramified prime-cyclic extensions], J. Reine Angew. Math. 336 (1982), 1-25. MR 671319 (84g:12002)
  • 13. Iwasawa, Kenkichi. A note on capitulation problem for number fields. Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 2, 59-61. MR 1010815 (90k:11136)
  • 14. Iwasawa, Kenkichi. A note on capitulation problem for number fields. II. Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 6, 183-186. MR 1011867 (90k:11139)
  • 15. Janusz, Gerald J. Algebraic number fields. Second edition. Graduate Studies in Mathematics, 7. American Mathematical Society, Providence, RI, 1996. MR 1362545 (96j:11137)
  • 16. Jaulent, J.-F. L'état actuel du problème de la capitulation. (French) [The current state of the capitulation problem], Séminaire de Théorie des Nombres, 1987-1988, Exp. No. 17, 33 pp., Univ. Bordeaux I, Talence.
  • 17. Miyake, Katsuya. On the capitulation problem. Hey, class field theory is waking up. Sugaku Expositions 1 (1988), no. 2, 175-194. MR 855006 (88j:11081)
  • 18. Narkiewicz, Wladyslaw. Elementary and analytic theory of algebraic numbers. Third edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004. MR 2078267 (2005c:11131)
  • 19. Suzuki, Hiroshi. On the capitulation problem. Class field theory--its centenary and prospect (Tokyo, 1998), 483-507, Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001. MR 1846474 (2002k:11207)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11R27, 11R29

Retrieve articles in all journals with MSC (2010): 11R27, 11R29


Additional Information

Kimball Martin
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73011
Email: kmartin@math.ou.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11053-0
Keywords: Nonunique factorization, principalization, class group
Received by editor(s): February 23, 2010
Published electronically: May 4, 2011
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society