Order reduction method for linear difference equations
Authors:
R. Korhonen and O. Ronkainen
Journal:
Proc. Amer. Math. Soc. 139 (2011), 32193229
MSC (2010):
Primary 39A06; Secondary 30D35, 39A10, 39A12
Published electronically:
April 13, 2011
MathSciNet review:
2811278
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An order reduction method for homogeneous linear difference equations, analogous to the standard order reduction of linear differential equations, is introduced, and this method is applied to study the Nevanlinna growth relations between meromorphic coefficients and solutions of linear difference equations.
 1.
M.
J. Ablowitz, R.
Halburd, and B.
Herbst, On the extension of the Painlevé property to
difference equations, Nonlinearity 13 (2000),
no. 3, 889–905. MR 1759006
(2001g:39003), 10.1088/09517715/13/3/321
 2.
ZongXuan
Chen and Kwang
Ho Shon, The growth of solutions of differential equations with
coefficients of small growth in the disc, J. Math. Anal. Appl.
297 (2004), no. 1, 285–304. MR 2080381
(2005g:34224), 10.1016/j.jmaa.2004.05.007
 3.
YikMan
Chiang and ShaoJi
Feng, On the Nevanlinna characteristic of
𝑓(𝑧+𝜂) and difference equations in the complex
plane, Ramanujan J. 16 (2008), no. 1,
105–129. MR 2407244
(2009c:30073), 10.1007/s1113900791011
 4.
YikMan
Chiang and ShaoJi
Feng, On the growth of logarithmic
differences, difference quotients and logarithmic derivatives of
meromorphic functions, Trans. Amer. Math.
Soc. 361 (2009), no. 7, 3767–3791. MR 2491899
(2010c:30044), 10.1090/S0002994709046637
 5.
YikMan
Chiang and Simon
N. M. Ruijsenaars, On the Nevanlinna order of meromorphic solutions
to linear analytic difference equations, Stud. Appl. Math.
116 (2006), no. 3, 257–287. MR 2220338
(2006m:39005), 10.1111/j.14679590.2006.00343.x
 6.
Anatoly
A. Goldberg and Iossif
V. Ostrovskii, Value distribution of meromorphic functions,
Translations of Mathematical Monographs, vol. 236, American
Mathematical Society, Providence, RI, 2008. Translated from the 1970
Russian original by Mikhail Ostrovskii; With an appendix by Alexandre
Eremenko and James K. Langley. MR 2435270
(2009f:30067)
 7.
Gary
G. Gundersen, Finite order solutions of second order
linear differential equations, Trans. Amer.
Math. Soc. 305 (1988), no. 1, 415–429. MR 920167
(88j:34013), 10.1090/S00029947198809201675
 8.
Gary
G. Gundersen, Enid
M. Steinbart, and Shupei
Wang, The possible orders of solutions of
linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1225–1247. MR 1451603
(98h:34006), 10.1090/S0002994798020807
 9.
R.
G. Halburd and R.
J. Korhonen, Difference analogue of the lemma on the logarithmic
derivative with applications to difference equations, J. Math. Anal.
Appl. 314 (2006), no. 2, 477–487. MR 2185244
(2007e:39030), 10.1016/j.jmaa.2005.04.010
 10.
R. G. Halburd, R. J. Korhonen, and K. Tohge, Holomorphic curves with shiftinvariant hyperplane preimages, preprint (arXiv:0903.3236), 2009.
 11.
W.
K. Hayman, Meromorphic functions, Oxford Mathematical
Monographs, Clarendon Press, Oxford, 1964. MR 0164038
(29 #1337)
 12.
Janne
Heittokangas, Risto
Korhonen, and Jouni
Rättyä, Linear differential equations with
coefficients in weighted Bergman and Hardy spaces, Trans. Amer. Math. Soc. 360 (2008), no. 2, 1035–1055 (electronic). MR 2346482
(2008k:34338), 10.1090/S0002994707043358
 13.
K.
Ishizaki and N.
Yanagihara, WimanValiron method for difference equations,
Nagoya Math. J. 175 (2004), 75–102. MR 2085312
(2006c:39001)
 14.
Liisa
Kinnunen, Linear differential equations with solutions of finite
iterated order, Southeast Asian Bull. Math. 22
(1998), no. 4, 385–405. MR 1811183
(2001i:34154)
 15.
Ilpo
Laine, Nevanlinna theory and complex differential equations,
de Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter &
Co., Berlin, 1993. MR 1207139
(94d:34008)
 16.
C.
Praagman, Fundamental solutions for meromorphic linear difference
equations in the complex plane, and related problems, J. Reine Angew.
Math. 369 (1986), 101–109. MR 850630
(88b:39004), 10.1515/crll.1986.369.101
 17.
S.
N. M. Ruijsenaars, First order analytic difference equations and
integrable quantum systems, J. Math. Phys. 38 (1997),
no. 2, 1069–1146. MR 1434226
(98m:58065), 10.1063/1.531809
 18.
J.
M. Whittaker, Interpolatory function theory, Cambridge Tracts
in Mathematics and Mathematical Physics, No. 33, StechertHafner, Inc., New
York, 1964. MR
0185330 (32 #2798)
 1.
 M. J. Ablowitz, R. G. Halburd, and B. Herbst, On the extension of the Painlevé property to difference equations, Nonlinearity 13 (2000), 889905. MR 1759006 (2001g:39003)
 2.
 Z.X. Chen and K. W. Shon, The growth of solutions of differential equations with coefficients of small growth in the disc, J. Math. Anal. Appl. 297 (2004), no. 1, 285304. MR 2080381 (2005g:34224)
 3.
 Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of and difference equations in the complex plane, Ramanujan J. 16 (2008), 105129. MR 2407244 (2009c:30073)
 4.
 , On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 37673791. MR 2491899 (2010c:30044)
 5.
 Y. M. Chiang and S. N. M. Ruijsenaars, On the Nevanlinna order of meromorphic solutions to linear analytic difference equations, Stud. Appl. Math. 116 (2006), no. 3, 257287. MR 2220338 (2006m:39005)
 6.
 A. A. Goldberg and I. V. Ostrovskii, Value distribution of meromorphic functions, Translations of Mathematical Monographs, vol. 236, American Mathematical Society, Providence, RI, 2008. MR 2435270 (2009f:30067)
 7.
 G. G. Gundersen, Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), 415429. MR 920167 (88j:34013)
 8.
 G. G. Gundersen, E. M. Steinbart, and S. Wang, The possible orders of solutions of linear differential equations with polynomial coefficients, Trans. Amer. Math. Soc. 350 (1998), 12251247. MR 1451603 (98h:34006)
 9.
 R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), 477487. MR 2185244 (2007e:39030)
 10.
 R. G. Halburd, R. J. Korhonen, and K. Tohge, Holomorphic curves with shiftinvariant hyperplane preimages, preprint (arXiv:0903.3236), 2009.
 11.
 W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964. MR 0164038 (29:1337)
 12.
 J. Heittokangas, R. Korhonen, and J. Rättyä, Linear differential equations with coefficients in weighted Bergman and Hardy spaces, Trans. Amer. Math. Soc. 360 (2008), no. 2, 10351055. MR 2346482 (2008k:34338)
 13.
 K. Ishizaki and N. Yanagihara, WimanValiron method for difference equations, Nagoya Math. J. 175 (2004), 75102. MR 2085312 (2006c:39001)
 14.
 L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math. 22 (1998), no. 4, 385405. MR 1811183 (2001i:34154)
 15.
 I. Laine, Nevanlinna theory and complex differential equations, Walter de Gruyter, Berlin/New York, 1993. MR 1207139 (94d:34008)
 16.
 C. Praagman, Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems, J. Reine Angew. Math. 369 (1986), 101109. MR 850630 (88b:39004)
 17.
 S. N. M. Ruijsenaars, First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), no. 2, 10691146. MR 1434226 (98m:58065)
 18.
 J. M. Whittaker, Interpolatory function theory, Cambridge Tracts in Mathematics and Mathematical Physics, vol. 33, StechertHafner, New York, 1964. MR 0185330 (32:2798)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
39A06,
30D35,
39A10,
39A12
Retrieve articles in all journals
with MSC (2010):
39A06,
30D35,
39A10,
39A12
Additional Information
R. Korhonen
Affiliation:
Department of Physics and Mathematics, University of Eastern Finland, Joensuu Campus, P. O. Box 111, FI80101 Joensuu, Finland
Email:
risto.korhonen@uef.fi
DOI:
http://dx.doi.org/10.1090/S000299392011110815
Received by editor(s):
March 9, 2010
Published electronically:
April 13, 2011
Additional Notes:
The research reported in this paper was supported in part by the Academy of Finland grants No. 118314 and No. 134792 and the European Science Foundation RNP HCAA
Communicated by:
Ken Ono
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
