Order reduction method for linear difference equations

Authors:
R. Korhonen and O. Ronkainen

Journal:
Proc. Amer. Math. Soc. **139** (2011), 3219-3229

MSC (2010):
Primary 39A06; Secondary 30D35, 39A10, 39A12

Published electronically:
April 13, 2011

MathSciNet review:
2811278

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An order reduction method for homogeneous linear difference equations, analogous to the standard order reduction of linear differential equations, is introduced, and this method is applied to study the Nevanlinna growth relations between meromorphic coefficients and solutions of linear difference equations.

**1.**M. J. Ablowitz, R. Halburd, and B. Herbst,*On the extension of the Painlevé property to difference equations*, Nonlinearity**13**(2000), no. 3, 889–905. MR**1759006**, 10.1088/0951-7715/13/3/321**2.**Zong-Xuan Chen and Kwang Ho Shon,*The growth of solutions of differential equations with coefficients of small growth in the disc*, J. Math. Anal. Appl.**297**(2004), no. 1, 285–304. MR**2080381**, 10.1016/j.jmaa.2004.05.007**3.**Yik-Man Chiang and Shao-Ji Feng,*On the Nevanlinna characteristic of 𝑓(𝑧+𝜂) and difference equations in the complex plane*, Ramanujan J.**16**(2008), no. 1, 105–129. MR**2407244**, 10.1007/s11139-007-9101-1**4.**Yik-Man Chiang and Shao-Ji Feng,*On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions*, Trans. Amer. Math. Soc.**361**(2009), no. 7, 3767–3791. MR**2491899**, 10.1090/S0002-9947-09-04663-7**5.**Yik-Man Chiang and Simon N. M. Ruijsenaars,*On the Nevanlinna order of meromorphic solutions to linear analytic difference equations*, Stud. Appl. Math.**116**(2006), no. 3, 257–287. MR**2220338**, 10.1111/j.1467-9590.2006.00343.x**6.**Anatoly A. Goldberg and Iossif V. Ostrovskii,*Value distribution of meromorphic functions*, Translations of Mathematical Monographs, vol. 236, American Mathematical Society, Providence, RI, 2008. Translated from the 1970 Russian original by Mikhail Ostrovskii; With an appendix by Alexandre Eremenko and James K. Langley. MR**2435270****7.**Gary G. Gundersen,*Finite order solutions of second order linear differential equations*, Trans. Amer. Math. Soc.**305**(1988), no. 1, 415–429. MR**920167**, 10.1090/S0002-9947-1988-0920167-5**8.**Gary G. Gundersen, Enid M. Steinbart, and Shupei Wang,*The possible orders of solutions of linear differential equations with polynomial coefficients*, Trans. Amer. Math. Soc.**350**(1998), no. 3, 1225–1247. MR**1451603**, 10.1090/S0002-9947-98-02080-7**9.**R. G. Halburd and R. J. Korhonen,*Difference analogue of the lemma on the logarithmic derivative with applications to difference equations*, J. Math. Anal. Appl.**314**(2006), no. 2, 477–487. MR**2185244**, 10.1016/j.jmaa.2005.04.010**10.**R. G. Halburd, R. J. Korhonen, and K. Tohge,*Holomorphic curves with shift-invariant hyperplane preimages*, preprint (arXiv:0903.3236), 2009.**11.**W. K. Hayman,*Meromorphic functions*, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR**0164038****12.**Janne Heittokangas, Risto Korhonen, and Jouni Rättyä,*Linear differential equations with coefficients in weighted Bergman and Hardy spaces*, Trans. Amer. Math. Soc.**360**(2008), no. 2, 1035–1055 (electronic). MR**2346482**, 10.1090/S0002-9947-07-04335-8**13.**K. Ishizaki and N. Yanagihara,*Wiman-Valiron method for difference equations*, Nagoya Math. J.**175**(2004), 75–102. MR**2085312****14.**Liisa Kinnunen,*Linear differential equations with solutions of finite iterated order*, Southeast Asian Bull. Math.**22**(1998), no. 4, 385–405. MR**1811183****15.**Ilpo Laine,*Nevanlinna theory and complex differential equations*, de Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR**1207139****16.**C. Praagman,*Fundamental solutions for meromorphic linear difference equations in the complex plane, and related problems*, J. Reine Angew. Math.**369**(1986), 101–109. MR**850630**, 10.1515/crll.1986.369.101**17.**S. N. M. Ruijsenaars,*First order analytic difference equations and integrable quantum systems*, J. Math. Phys.**38**(1997), no. 2, 1069–1146. MR**1434226**, 10.1063/1.531809**18.**J. M. Whittaker,*Interpolatory function theory*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 33, Stechert-Hafner, Inc., New York, 1964. MR**0185330**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
39A06,
30D35,
39A10,
39A12

Retrieve articles in all journals with MSC (2010): 39A06, 30D35, 39A10, 39A12

Additional Information

**R. Korhonen**

Affiliation:
Department of Physics and Mathematics, University of Eastern Finland, Joensuu Campus, P. O. Box 111, FI-80101 Joensuu, Finland

Email:
risto.korhonen@uef.fi

DOI:
https://doi.org/10.1090/S0002-9939-2011-11081-5

Received by editor(s):
March 9, 2010

Published electronically:
April 13, 2011

Additional Notes:
The research reported in this paper was supported in part by the Academy of Finland grants No. 118314 and No. 134792 and the European Science Foundation RNP HCAA

Communicated by:
Ken Ono

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.